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Abstract

As a baseball game progresses, batters appear to perform better the more times

they face a particular pitcher. The apparent drop-off in pitcher performance from one

time through the order to the next, known as the Time Through the Order Penalty

(TTOP), is often attributed to within-game batter learning. Although the TTOP has

largely been accepted within baseball and influences many managers’ in-game decision

making, we argue that existing approaches of estimating the size of the TTOP cannot

disentangle continuous evolution in pitcher performance over the course of the game

from discontinuities between successive times through the order. Using a Bayesian

multinomial regression model, we find that, after adjusting for confounders like batter

and pitcher quality, handedness, and home field advantage, there is little evidence of

strong discontinuity in pitcher performance between times through the order. Our

analysis suggests that the start of the third time through the order should not be

viewed as a special cutoff point in deciding whether to pull a starting pitcher.
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1 Introduction

In Game 6 of the 2020 World Series, the Tampa Bay Rays’ manager, Kevin Cash, pulled

his starting pitcher, Blake Snell, midway through the sixth inning. When he was pulled,

Snell had been pitching extremely well; he had allowed just two hits and struck out nine

batters on 73 pitches. Moreover, the Rays had a one run lead. Snell’s replacement, Nick

Anderson, promptly gave up two runs, which ultimately proved decisive: the Rays went on

to lose the game and the World Series. After the game, Cash justified his decision to pull

Snell, remarking that he “didn’t want Mookie [Betts] or [Corey] Seager seeing Blake a third

time” (Rivera, 2020).

In his justification, Cash cites the third Time Through the Order Penalty (TTOP), which

was first formally identified in Tango et al. (2007, pp. 187–190) and recently popularized

by Lichtman (2013). It has long been observed that, on average, batters tend to perform

better the more times they face a pitcher; for instance, they tend to get on base more

often on their third time facing a pitcher than their second. Tango et al. (2007) quantified

the corresponding drop-off in pitcher performance as increases in weighted on-base average

(wOBA; see Section 2.4 for details). They observed that the average wOBA of a plate

appearance in the first time through the order (1TTO) is about 9 wOBA points less than

that in the second TTO (2TTO). Further, the average wOBA of a plate appearance in the

second TTO is about 8 wOBA points less than that in the third TTO (3TTO) (Tango et al.,

2007, Table 81).

The TTOP is considered canon by much of the baseball community. Announcers routinely

mention the 3TTOP during broadcasts and several managers regularly use the 3TTOP to

justify their decisions to pull starting pitchers at the start of the third TTO. For instance,

A.J. Hinch, who managed the Houston Astros from 2015 to 2019, noted “the third time

through is very difficult for a certain caliber of pitchers to get through.” Brad Ausmus, who

managed the Detroit Tigers from 2014 to 2017, explained “the more times a hitter sees a

pitcher, the more success that hitter is going to have” (Laurila, 2015).

Tango et al. (2007) attribute the increased average wOBA from one TTO to the next to

within-game batter learning. According to them, batters learn the tendencies of a pitcher

as the game progresses. In fact, they observe “pitchers hitting a wall after 10 or 11 batters”

rather than a “steady degradation in [pitcher] performance” (Tango et al., 2007, pg. 189).

Lichtman (2013) agrees and goes further, stating “the TTOP is not about fatigue. It is
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about [batter] familiarity.”

We argue that Tango et al. (2007)’s analysis is insufficient to justify such sweeping conclu-

sions. Tango et al. (2007) estimated the 2TTOP and 3TTOP by first binning plate appear-

ances by lineup position and TTO. They then computed the average wOBA within each bin.

Their analysis, by design, cannot disentangle continuous evolution in pitcher performance

over the course of a game (e.g., from pitcher fatigue) from discontinuities between successive

TTOs (e.g., from batter learning). Further, they provide no uncertainty quantification about

their estimated TTOPs.

We conduct a more rigorous statistical analysis of the trajectory of pitcher performance over

the course of a baseball game. Specifically, we fit a Bayesian multinomial logistic regression

model to predict the outcome of each plate appearance as a function of the batter sequence

number, batter quality, pitcher quality, handedness match, and home field advantage. The

batter sequence number simply counts how many batters the pitcher has faced up to and

including the current plate appearance. We find that the expected wOBA forecast by our

model increases steadily over the course of a game and does not display sharp discontinuities

between times through the order. Based on these results, we recommend managers cease

pulling starting pitchers at the beginning of the 3TTO.

The remainder of this paper is organized as follows. We introduce our Bayesian multinomial

logistic regression model of a plate appearance outcome in Section 2. We present our main

findings in Section 3 and conclude by discussing implications of our results in Section 4.

2 Data and model specification

We begin with a brief overview of our MLB plate appearance dataset and identify several

variables that may be predictive of the outcome of a plate appearance. We then introduce

our Bayesian multinomial logistic regression model.

2.1 Retrosheet data

We scraped every plate appearance from 1990 to 2020 from the Retrosheet database. For

each plate appearance, we record the outcome (e.g. out, single, etc.), the event wOBA,

the handedness match between the batter and pitcher, and whether the batter is at home.

We further compute measures of batter and pitcher quality for each plate appearance (see
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Section 2.5 for details). We include our final dataset, along with all pre-processing and data

analysis scripts in the Supplementary Materials. We used R (R Core Team, 2020) for all

analyses.

We restrict our analysis to every plate appearance from 2012 to 2019 featuring a starting

pitcher in one of the first three times through the order, using the 2017 season as our primary

example. We remove plate appearances featuring switch hitters from our dataset. Our 2017

dataset consists of 108, 519 plate appearances, 691 unique batters, and 315 unique starting

pitchers.

There are K = 7 possible outcomes of a plate appearance: out, unintentional walk (uBB),

hit by pitch (HBP), single (1B), double (2B), triple (3B), and home run (HR). For each i =

1, . . . , n, let yi be the categorical variable indicating the outcome of the ith plate appearance.

Notationally, we write

yi ∈ {1, 2, ..., 7} = {Out, uBB, HBP, 1B, 2B, 3B, HR}. (1)

In predicting the probability of each plate appearance outcome, we need to control for several

factors. We introduce the batter sequence number t ∈ {1, ..., 27}, which records how many

batters the pitcher has faced up to and including that plate appearance. We additionally

construct indicators of being in the 2TTO and 3TTO, I (10 ≤ t ≤ 18) and I (19 ≤ t ≤ 27) .

Intuitively, we expect that most pitchers are more likely to give up base hits and home runs

to elite batters than they are to strike out elite batters. Similarly, we expect elite pitchers

would have more plate appearances ending in outs than base hits against most batters.

Accordingly, when modeling the outcome of a plate appearance, we adjust for the quality or

skill of the batter and pitcher. To this end, let x(p) and x(b) denote the estimates of pitcher

and batter quality, respectively. We discuss the computation of both quality measures in

Section 2.5.

Additionally, we expect that a pitcher whose handedness matches that of the batter (e.g.,

the pitcher and batter are both right handed) is less likely to give up base hits and home runs

than a pitcher whose handedness doesn’t match the batter’s. To this end, we define hand,

an indicator that is equal to one when the batter and pitcher have matching handedness and

zero otherwise. Finally, we expect that a pitcher on the road is more likely to give up base

hits and home runs than a pitcher at home. Thus we define home, an indicator that is equal

to one when the batter is at home and zero otherwise.
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Table 1 summarizes the variables that we record from plate appearance i.

Table 1: Summary of variables measured for each at-bat that are used in our analysis.

Covariate symbol Covariate description
yi outcome of the ith plate appearance ∈ {1, ..., K = 7}
ti the batter sequence number ∈ {1, ..., 27}
I (ti ∈ 2TTO) binary variable indicating whether the pitcher is in his second TTO
I (ti ∈ 3TTO) binary variable indicating whether the pitcher is in his third TTO

x
(b)
i running-average estimator of batter quality

x
(p)
i running-average estimator of pitcher quality

handi binary variable indicating handedness match between batter and pitcher
homei binary variable indicating whether the batter is at home

xi xi = (x
(b)
i , x

(p)
i , handi, homei)

2.2 A multinomial logistic regression model

We fit a Bayesian multinomial logistic regression model to predict the outcome of each plate

appearance. For each non-out result (k ̸= 1), we model

log

(
P(yi = k)

P(yi = 1)

)
= α0k + α1kti + β2kI (ti ∈ 2TTO) + β3kI (ti ∈ 3TTO) + x⊤

i ηk, (2)

where the vector xi concatenates our batter and pitcher quality and indicators for handedness

and home team: x⊤
i = (x

(b)
i , x

(p)
i , handi, homei).

The parameters α0k and α1k control the continuous evolution of the probability of each plate

appearance outcome throughout the game. In contrast, the parameters β2k and β3k allow for

discontinuities in these probabilities between different times through the order. Pitchers face

each of the opposing team’s batters, and so we interpret the term α0k+α1kt as the continuous

effect of a change in pitcher performance on the probability of each outcome. Batters, on

the other hand, take turns facing the opposing team’s pitcher, and so we interpret β2k and

β3k−β2k as the respective discontinuous effects of a change in batter performance between the

first and second times through the order and between the second and third times through the

order. Observe that for k ̸= 1, a large positive value of β2k suggest that the non-out outcome

k is systematically more likely to occur in the the second time through the order than the

first. Similarly, a large positive positive value of β3k −β2k suggests that the outcome is more

likely to occur in the third time through the order than the second. Consequently, based
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on our model parametrization, we would anticipate the 2TTOP and 3TTOP to manifest as

positive values β2k and β3k − β2k.

Our model allows the log-odds of each non-out plate appearance outcome to evolve linearly

with batter sequence number. A more flexible model wouldn’t enforce a particular functional

form on the change in pitcher performance over the course of a game. Additionally, our

model assumes that the trajectory of within-game pitcher deterioration is the same across

all pitchers and batters. A more elaborate model would allow within-game performance to

change at at different rates for different players. We find that using these more elaborate

models doesn’t change the qualitative results of our study (see Appendix E).

Moreover, previous research suggests that pitchers decline continuously over the course of the

game; Greenhouse (2011), for instance, documented continuous decreases in pitch velocity.

On this view, the longer a pitcher stays in the game, the more likely he is to allow non-out

outcomes in a plate appearance due to his continuous deterioration. We encode our intuition

in Model (2) by constraining the slopes α1k to be positive with a truncated prior:

α1k ∼ half-t7. (3)

We specify standard normal priors to all of our other coefficients,

α0k, β2k, β3k, ηℓk ∼ N (0, 1). (4)

Note that the qualitative results of our study remain the same when we use a diffuse prior

N (0, 25) and drop the positive-slope constraint (see Appendix E.2).

Because the posterior distribution of (α, β, η) is not analytically tractable, we use Markov

Chain Monte Carlo (MCMC) to draw approximate samples from the posterior distribution.

We implement our sampler in Stan (Carpenter et al., 2017) and perform our MCMC simula-

tion using the rstan package (Stan Development Team, 2022). We use a high-performance

computing cluster to run all of our computations.

Additionally, in Appendix B we conduct a simulation study to assess the capacity of our

model to estimate time through the order penalties of various sizes. Specifically, we simulate

data consistent with different TTOPs and verify that our posterior estimates are close to

the data generating parameters.

6



2.3 Selection bias

We are primarily interested in understanding the magnitude and significance of discontin-

uous pitcher decline between times through the order. Formally, we are interested in the

parameters β2k and β3k from our Model (2). Ideally we want to estimate β in the coun-

terfactual scenario in which each pitcher faces each of the first 27 opposing batters. But,

we cannot conduct a randomized controlled experiment; rather, we use observational data

which is subject to the selection process of a baseball manager removing his starting pitcher.

We visualize this selection process in Figure 1, which shows that worse pitchers (pitcher

quality larger than, say, 0.34) are slightly more likely to be removed earlier in the game, as

the corresponding histogram is shifted slightly to the left. Note that the six pitcher quality

bins in Figure 1 are six evenly sized quantiles of pitcher quality.

Because our dataset is missing some 3TTO batting observations against worse pitchers,

fitting Model (2) on our raw dataset may lead to a lower estimated probability of each non-

out plate appearance outcome in 3TTO. To combat this, we remove all games from our

dataset in which the starting pitcher is pulled prior to 3TTO. In 2017, for instance, this

reduces our dataset by 8% from 4860 games to 4469 games. Then, we fit our Model (2) on

the reduced dataset, and we interpret our results as a TTOP (or lack thereof) conditional

on getting through 2TTO. Conditional on getting through 2TTO, our dataset of all starting

pitcher at-bats in the first three TTOs is balanced on the pitcher quality covariate, and so

the TTOP discontinuity parameters β won’t be biased due to the selection process. In other

words, after our data truncation, the distribution of pitcher quality is similar for each batter

sequence number t .

Even after truncating our dataset, since most starting pitchers are removed during 3TTO,

our dataset is missing observations at the end of 3TTO. If each pitcher were allowed to pitch

to the end of 3TTO, it is plausible that he would perform even worse than he did earlier

in the game due to, for instance, additional fatigue. Therefore, we still underestimate the

continuous pitcher decline parameters α. Nonetheless, as we are primarily interested in the

discontinuity parameters β and not the continuity parameters α, we leave a more elaborate

estimation of continuous pitcher decline to future work.

2.4 Measuring pitcher performance via wOBA

Weighted on-base average. Although Model (2) allows us to examine potential TTOPs

for each plate appearance outcome, such multivariate measures are somewhat difficult to
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Figure 1: Histogram of the batter sequence number t at which a starting pitcher exits the
game for different bins of pitcher quality.

interpret and compare. We instead focus on quantifying the TTOP using a much more

interpretable quantity, weighted on-base average (wOBA), which was first introduced in

Tango et al. (2007).

wOBA overcomes many limitations of traditional metrics like batting average, on-base per-

centage, and slugging percentage. Briefly, batting average and on-base percentage treat all

hits equally, with singles being worth as much as triples. Slugging percentage attempts to

reward different types of hits differently, but does so in too simplistic of a fashion: in comput-

ing slugging percentage, a triple is worth three times what a single is worth. Such weighting

is arbitrary, and is not tied to the relative impact of a triple over a single with regard to,

say, run scoring or win probability. wOBA combines the different aspects of offensive pro-

duction into one metric, weighing each offensive action in proportion to its actual run value

(Slowinski, 2010). The wOBA of a plate appearance is simply the weight associated with the

offensive action of the outcome. Specifically, the 2019 wOBA weight of each offensive action

in decreasing order is 1.940 for a home run (HR), 1.529 for a triple (3B), 1.217 for a double

(2B), 0.870 for a single (1B), 0.719 for hit-by-pitch (HBP), 0.690 for unintentional walks

(uBB), and 0 for an out (OUT) (Fangraphs, 2021). wOBA is rescaled so that the league

average wOBA equals the league average on-base percentage. Throughout this paper, we

use 2019 wOBA weights for each season. Additionally, we usually refer to wOBA points,

which is wOBA multiplied by 1000, to be consistent with the baseball community’s use of

wOBA.

To understand the effect size of a potential time through the order penalty, it is important

to understand the distribution of wOBA points across batters and pitchers. In Figure 2, we
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plot the distribution of end-of-season mean plate appearance wOBA points for all batters

and for all pitchers in 2017 who have over 100 plate appearances. Both batters and pitchers

have a median wOBA points of 315. The standard deviation of wOBA points for batters is

41.5, and for pitchers is 36.7.

(a) (b)

Figure 2: The distribution of end-of-season mean wOBA points for all batters in 2017 (a)
and all pitchers in 2017 (b) with over 100 plate appearances, using 2019 wOBA weights. The
red line denotes the mean.

Expected weighted on-base average. Using Model (2), we can predict the probability

of each plate appearance outcome. We can use these predicted probabilities to derive an

expected wOBA for each plate appearance. We use expected wOBA to examine the trajectory

of pitcher performance throughout the game.

To this end, let k ∈ {1, ..., K} denote the outcome of a plate appearance and let t ∈ {1, ..., 27}
denote the tth batter a pitcher faces in a game. Also, let x(b) be the logit-transformed quality

of the batter, x(p) the logit-transformed quality of the pitcher, hand be the binary indicator

of the handedness match between the batter and pitcher, and home be the binary indicator

of home field advantage. Define the plate-appearance-state vector x by

x⊤ = (x(b), x(p), hand, home). (5)

Then, according to Model (2), the probability that a plate appearance involving the tth
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batter of a game and plate-appearance-state vector x results in outcome k is

P(y = k|t,x) = λk(t,x)∑K
j=1 λj(t,x)

, (6)

where

λk(t,x) = exp
(
α0k + α1kt+ β2kI (t ∈ 2TTO) + β3kI (t ∈ 3TTO) + x⊤ηk

)
(7)

when k ̸= 1 and λk(t,x) = 1 when k = 1. From this, we define the expected wOBA points

of a plate appearance involving the tth batter of a game and plate-appearance-state vector

x by

xwOBA(t,x) =
K∑
k=1

1000 · wk · P(y = k|t,x), (8)

where wk is the wOBA weight of the kth plate appearance outcome.

To visualize the nature of within-game pitcher decline implied by Model (2), we in Section 3

plot the trajectory of the expected wOBA of a plate appearance over the course of a game,

{
xwOBA(t,x)

}27

t=1
, (9)

holding the plate-appearance-state vector x constant.

2.5 Definitions of pitcher and batter quality

To measure batter quality, we could use a batter’s end-of-season average wOBA. Doing

so, however, introduces a form of data bleed into our analysis: yi, the wOBA of the ith

plate appearance, is used to compute the batter’s end-of-season average wOBA, so to use

it as a covariate is to use yi to help predict yi. To avoid data bleed, we could instead use

a batter’s average wOBA over all prior plate appearances during the current season. Early

in the season, however, this metric is extremely noisy. Hence we introduce a normal-normal

conjugate running-average estimator that early in the season is close to a batter’s average

wOBA from the end of his previous season and that is closer to his current average wOBA

later in the season.

Specifically, let xbj be batter b’s wOBA in his jth plate appearance of this season, and let θb

represent batter b’s unobservable “true quality” (the expected wOBA of a plate appearance
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with batter b this season). After observing j plate appearances, we model

xb1, ..., xbj

∣∣θb ∼ N (θb, τ
2)

θb ∼ N (θb0, ν
2).

(10)

Here, θb0 represents batter b’s prior “true quality.” For non-rookies, we set θb0 as the average

wOBA of a plate appearance with batter b from his most recent previous season, and for

rookies, we use the median θb′0 over all other non-rookie batters b
′. Additionally, ν represents

the season-by-season standard deviation in a batter’s average plate-appearance wOBA, and τ

represents the within-season standard deviation of the wOBA of a batter’s plate appearances.

Then, to measure batter b’s quality through j plate appearances this season, we introduce

the running-average estimator θ̂bj as the posterior mean E[θb
∣∣xb1, ..., xbj] of θb, which as a

result of our normal-normal conjugate model (10) is given by

θ̂bj =
τ−2

∑j
i=1 xbi + ν−2θb0
jτ−2 + ν−2

. (11)

We then set x
(b)
j = logit(θ̂bj).We use the logit-transformed estimates of batter quality because

we felt it was more natural to allow the log-odds of each plate appearance outcome to evolve

non-linearly with respect to these quality metrics. Specifically, we find it plausible that there

are diminishing returns at both extremes of player quality. That is, we did not expect a small

change in pitcher quality to manifest the same changes in the log-odds of a particular plate

appearance outcome for a mediocre pitcher, an average pitcher, or an elite pitcher (keeping

all else constant). The logit transformation allows us to capture this phenomenon. While this

choice may appear somewhat unusual, we have found that it also yields a model with better

predictive accuracy than a model that uses the raw quality covariates (see Appendix D.2).

We similarly construct a running estimate of pitcher p’s quality through j plate appearances

of the season with an analogous normal-normal model. For simplicity, we used the same

values of ν and τ for batters and pitchers. To set ν, we first compute the event wOBA for

each player-season from 2006 to 2019. Then we compute the standard deviation of these

seasonal averages for each player. The median of these player-specific standard deviations

was 0.0396 for pitchers and 0.0586 for batters. We finally set ν = 0.05 to be the average of

these values. To set τ, we compute the standard deviation of event wOBA for each player-

season from 2006 and 2016. Across player-seasons, the median of these standard deviations
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was 0.509 for pitchers and 0.489 for batters. We set τ = 0.5 as a simple compromise between

these values.

3 Results

We fit our model to the data from each season in our dataset. In this section, we discuss our

modeling results for the 2017 season. We observe qualitatively similar results in each other

season.

To obtain our posterior samples, we run four MCMC chains for 1,500 iterations. After

discarding the first 750 iterations of each chain as “burn-in”, the Gelman-Rubin R̂ statistic

is less than 1.1, suggesting convergence (Gelman and Rubin, 1992). Additionally, the effective

sample size of each parameter exceeds 1, 172 and the average effective sample size across all

parameters is 2, 852. It took about eight hours to run each chain.

We begin in Section 3.1 by examining the marginal posterior distributions of β2k and β3k −
β2k, which quantify discontinuity in pitcher performance between successive times through

the order. As noted in Section 2.2, large 2TTOP or 3TTOP would correspond to large,

positive values of β2k or β3k − β2k. We find, however, that the posterior distributions of

these parameters are not tightly concentrated on positive values. Instead, we find that these

distributions are, for the most part, centered near zero and place substantial probability on

both positive and negative values. We also see that fitted xwOBA values increase steadily

over the course of the game without discontinuity in the second or third time through the

order. Taken together, these findings suggest that our model finds little evidence of strong

discontinuity between successive times through the order.

At first glance, our results appear to contradict the findings of Tango et al. (2007). In

Section 3.2, however, we discuss how the conclusions of Tango et al. (2007) actually fit

within the framework of our model. We further find that pitcher and batter quality are

much stronger predictors of xwOBA than the within-game change in pitcher performance.

3.1 Little evidence of strong discontinuity between successive times

through the order

First, we examine the posterior distributions of the parameters β from our model (Equa-

tion (2)) which control discontinuous changes in pitcher performance. In Figure 3 we show
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boxplots of the posterior distributions of the discontinuity parameters1 β2k and β3k − β2k

from our model fit on data from 2017. Immediately we observe that none of these posterior

distributions is tightly concentrated around a large positive value, which is what we would

expect in the presence of a large 2TTOP or 3TTOP. Instead, most of these place consider-

able probability on both positive and negative values. The only exceptions are the posterior

distributions of β2,1B and β3,1B − β2,1B, which measure the discontinuities in the log-odds

of a single between times through the order. Although they both place over 80% posterior

probability on the positive axis, these distributions are supported on relatively small val-

ues. For instance, the posterior mean of β3,1B − β2,1B is about 0.03 on the log-odds scale,

which corresponds to a change in probability no greater than 0.75 percentage points. We

additionally observe the posterior distributions corresponding to some outcomes like triples

and hit-by-pitches are much more diffuse than those corresponding to other outcomes like

walks and singles. This is not entirely unexpected: there are considerably more singles and

walks in the dataset than triples and hit-by-pitches and the relative uncertainties about

the corresponding β2k and β3k − β2k values closely track the frequencies of these outcomes.

Ultimately, we do not find the posterior distributions in Figure 3 to be indicative of large,

systematic time through the order penalties. We obtain similar findings in each season from

2012 to 2019 (see Figure 12 in Appendix D.3).

Furthermore, we plot the trajectory of a pitcher’s expected wOBA over the course of the

game according to our model, fit on data from 2017. Specifically, in Figure 4, we plot the

posterior distribution of the sequence of xwOBA(t, x̃), where x̃ corresponds to an average

batter facing an average pitcher of the same handedness on the road,

x̃⊤ = (x(b), x(p), 1, 0). (12)

The white dots, thick black bars, and thin black bars denote the posterior mean, 50%

credible interval, and 95% credible interval of xwOBA(t, x̃). For now, ignore the blue lines,

blue shaded regions, and gray shaded regions, which we explain the next Section 3.2. We see

that expected wOBA increases steadily over the course of a game, without discontinuity in

the second or third time through the order. In other words, our model finds little evidence for

a strong discontinuity in the expected wOBA of a plate appearance. This trend is persistent

across each year from 2012 to 2019 (see Figure 13 of Appendix D.3) and other choices of x.

1To better interpret the effect sizes of these parameters, which are on the log odds scale, we translate
these values to the the probability scale and the expected wOBA scale in Appendix D.1.
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Figure 3: Posterior boxplots of the TTOP discontinuity parameters from Model (2), fit on
data from 2017. The blue line denotes 0. We see that each posterior distribution covers both
positive and negative values.

Figure 4: Trend in expected wOBA over the course of a game in 2017 for an average batter
facing an average pitcher of the same handedness on the road. The white dots, thick black
bars, and thin black bars denote the posterior mean, 50% credible interval, and 95% credible
interval of xwOBA(t, x̃). The blue lines, blue shaded regions, and gray shaded regions denote
the posterior mean, 50% credible interval, and 95% credible interval of xwOBA(t, x̃) averaged
within each TTO.
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3.2 Tango et al. (2007)’s conclusions fit within our framework

At first glance, our results appear to contradict the findings of Tango et al. (2007). Recall,

however, that while we carefully estimate the xwOBA for each batter faced, Tango et al.

(2007) identified the TTOP by comparing wOBA averaged across entire times through the

order. By similarly averaging xwOBA(t,x) within times through the order, it turns out that

we can recover the TTOP identified by Tango et al. (2007).

Formally, for each plate-appearance-state vector x, consider the average difference of xwOBA(t,x)

between the first and second times through the order,

D12(x) =
1

9

9∑
t=1

[xwOBA(t+ 9,x)− xwOBA(t,x)] . (13)

Using our fitted model, we study the posterior distribution of D12(x) and the similarly

defined D23(x), which captures the change in average xwOBA between the second and third

TTO.

The posterior means of D12(x̃) and D23(x̃) are about 13 wOBA points, which are consistent

with Tango et al. (2007)’s findings. Also, virtually all of the posterior samples are positive,

suggesting that average pitcher performance indeed declines from one TTO to the next.

Specifically, our model suggests that the expected wOBA points of an average plate appear-

ance increases by 13.4 (with a 95% credible interval of [7.78, 19.0]) from the first TTO to the

second, and by 12.5 (with a 95% credible interval of [5.98, 18.7]) from the second TTO to

the third. We show histograms of the posterior samples of D12(x̃) and D23(x̃) in Figure 11

in Appendix D.1.

Figure 4 overlays the trajectory of xwOBA(t, x̃) with the posterior mean (the blue lines),

the 50% credible intervals (the blue shaded regions), and the 95% posterior credible intervals

(the gray shaded regions) of the xwOBA(t, x̃) trajectory averaged over each TTO. We see

that mean pitcher performance within a TTO declines from each TTO to the next by about

13 wOBA points. Figure 4 reveals how these declines in average performance are an artifact

of continuous, not discontinuous, pitcher decline.
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3.3 The impact of handedness match and home field advantage

on the outcome of a plate appearance

As discussed previously, pitchers decline from one TTO to the next by about 13 wOBA

points on average. Now, we compare this effect size to that of confounders like batter

quality, pitcher quality, handedness match, and home field advantage. We find that batter

quality and pitcher quality have a much larger impact on predicting the outcome of a plate

appearance, whereas handedness and home field advantage have a similar effect size as the

batter sequence number.

We begin by assessing the impact of handedness match and home field advantage on the

outcome of a plate appearance. To do so, we compute the posterior mean of the expected

wOBA of a plate appearance averaged over the batter sequence numbers, for different com-

binations of handedness and home field advantage. Mathematically, for a batter of average

quality with batter-at-home value home ∈ {0, 1} facing a pitcher of average quality having

handedness match value hand ∈ {0, 1}, yielding plate-appearance-state vector

x⊤ = (x(b), x(p), home, hand), (14)

we compute the posterior mean and standard deviation of

1

27

27∑
t=1

xwOBA(t,x). (15)

In Table 2 we show the posterior mean ± two posterior standard deviations2 of Formula (15)

for all combinations of hand and home. Home field advantage has a similar effect size as

pitcher decline across one TTO: a batter at home has about 12 more mean expected wOBA

points than a batter on the road. Handedness match has a slightly larger effect: a pitcher

whose handedness matches that of the batter has about 18 fewer mean expected wOBA

points than one whose handedness does not match. The xwOBA intervals, given by the

posterior mean ± two posterior standard deviations, overlap for a batter at home vs. away

but do not overlap for a batter with vs. without a handedness match. In other words, we

find a significant handedness effect but not a significant home field effect.

2Although the posterior distribution of Formula (15) is not exactly Gaussian, we find that the actual 95%
credible interval is extremely close to the interval computed as the posterior mean ± twice the standard
deviation.
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Batter at Home
0 1

H
an

d
M
at
ch 0 316 (±7.8) 328 (±7.8)

1 298 (±6.9) 310 (±7.2)

Table 2: For different combinations of handedness match and home field advantage, the
posterior mean (and, in parenthesis, twice the posterior standard deviation) of the expected
wOBA points of a plate appearance, assuming a batter of average quality faces a pitcher of
average quality, averaged over the batter sequence numbers t = 1, ..., 27.

3.4 The impact of batter quality and pitcher quality on the out-

come of a plate appearance

Now, we assess the impact of batter quality and pitcher quality on the outcome of a plate

appearance. To do so, for different combinations of batter and pitcher quality, we compute

the posterior mean of the expected wOBA of a plate appearance, averaged over the batter

sequence numbers t ∈ {1, ..., 27}. Mathematically, for a batter of quality x(b) on the road

facing a pitcher of quality x(p) with a handedness match, yielding plate-appearance-state

vector

x⊤ = (x(b), x(p), 1, 0), (16)

we compute the posterior mean and standard deviation of

1

27

27∑
t=1

xwOBA(t,x). (17)

In Table 3 we show the posterior mean ± two posterior standard deviations of Formula 17

for all combinations of the 25th, 50th, and 75th quantiles of x(b) and x(p). Specifically, we take

the quantiles of the empirical distributions from Figure 2 from Section 2.4. For batters, the

25th quantile represents a bad batter, the 50th an average batter, and the 75th a good batter.

Conversely, for pitchers, the 25th quantile represents a good pitcher, the 50th an average

pitcher, and the 75th a bad pitcher.

As shown in Table 3, the quality of the batter and pitcher has a larger impact on the outcome

of a plate appearance than the batter sequence number t ∈ {1, ..., 27}. For instance, fix a

batter’s quality. The difference in mean expected wOBA points between a good and bad

pitcher is large: about 42 to 48 wOBA points, depending on the batter quality. To see
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this, consider the second row of Table 3, in which a median batter (50th quantile) faces

pitchers of various quality, assuming the batter is on the road and has the same handedness

as the pitcher, averaged over each lineup position. The expected wOBA points of a plate

appearance against a good pitcher (25th quantile) is 288, and against a bad pitcher (75th

quantile) is 333. So, for a median batter, the difference in expected wOBA points between

a good and a bad pitcher is about 45 wOBA points.

Conversely, fix a pitcher’s quality. Then the difference in mean expected wOBA points

between a good and bad batter is also large: about 36 to 41 wOBA points, depending on

the pitcher quality. Finally, note that these effects are significant, as the intervals given by

the posterior mean ± two posterior standard deviations do not overlap.

Pitcher Quality
25th quantile 50th quantile 75th quantile

B
at
te
r

Q
u
al
it
y 25th quantile 270 (±6.7) 291 (±6.9) 313 (±7.5)

50th quantile 288 (±7.0) 310 (±7.1) 333 (±7.7)
75th quantile 306 (±7.7) 329 (±7.8) 354 (±8.5)

Table 3: For different combinations of batter quality and pitcher quality (in terms of wOBA
points) – in particular, the 25th, 50th, and 75th quantile – the posterior mean (and, in paren-
thesis, twice the posterior standard deviation) of the expected wOBA points of a plate
appearance, assuming batters are on the road and have the same handedness as the pitcher,
averaged over the batter sequence numbers t = 1, ..., 27.

Therefore, pitcher quality and batter quality have a much larger impact on the outcome of

a plate appearance than within-game pitcher decline.

4 Discussion

It has long been observed that batters tend to perform better the more times they face a

particular pitcher. Tango et al. (2007) first quantified the corresponding drop-off in pitcher

quality and attributed the apparent time through the order penalty to batter learning. Their

analysis, however, does not attempt to disentangle continuous evolution in pitcher perfor-

mance over the course of the game from discontinuities between successive times through the

order. We instead model the outcome of a plate appearance in a way that accommodates

both of these. Our analysis reveals the expected wOBA of a plate appearance increases

steadily over the course of the game, over average, without significant discontinuity between
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each time through the order. Additionally, the posterior distributions of the model param-

eters that quantify discontinuous pitcher decline cover both positive and negative values.

These results suggest there is little evidence of strong discontinuity in pitcher performance

between successive times through the order. Based on our analysis, we do not believe it

always appropriate to pull pitchers at the start of the third time through the order. Rather,

we recommend managers base their decisions to pull a pitcher on a pitcher’s quality and

continuous decline throughout the game.

Although Tango et al. (2007) attributes within-game pitcher decline to batter learning, we

hesitate to make conclusions about the potential causes of within-game pitcher decline.

Nonetheless, we offer potential interpretations of the parameters of our model from Equa-

tion (2). Because a batter faces the opposing team’s pitcher at most once in each TTO, it is

natural to interpret the parameters β2k and β3k − β2k which quantify discontinuous pitcher

evolution as batter learning parameters. A pitcher, on the other hand, faces each opposing

batter. Thus it is natural to interpret the parameters α0k and α1k which quantify continuous

pitcher decline as pitcher fatigue parameters. In particular, it is known that pitchers fatigue

continuously over the course of a game (e.g., Greenhouse (2011)). Nonetheless, there are

other potential mechanisms of pitcher decline (e.g., a changing pitch selection, discussed

below), and we don’t explicitly adjust for pitcher fatigue. Hence we hesitate to make causal

conclusions from our model.

Furthermore, although our analysis is more nuanced than Tango et al. (2007)’s, our analysis

is not without limitations. Recall that our model allows the log-odds of each non-out plate

appearance outcome to evolve linearly with batter sequence number. A more flexible model

wouldn’t force a particular functional form on the change in pitcher performance over the

course of a game. We find that using a more flexible model doesn’t change the qualitative

results of our study (see Appendix E.1). Additionally, our model assumes that the trajectory

of within-game pitcher deterioration is the same across all pitchers and batters. A more

elaborate model would allow within-game performance to change at at different rates for

different players. We find that using this more elaborate model doesn’t change the qualitative

results of our study (see Appendix E.2).

Additionally, we note that there is enormous variation in pitching performance on a game-

by-game basis. Although Tango et al. (2007, Chapter 7) believe this is due to randomness

rather than pitcher “hotness”, a more flexible model may use an estimate of pitcher quality

which updates as a game evolves. For those who believe in pitcher “hotness”, omitting a
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measure of within-game pitcher quality contributes further to selection bias. In particular,

whether we observe a pitcher in 3TTO depends on his performance earlier in the game, as

a pitcher who “bombs” or begins pitching poorly is more likely to be removed earlier in

the game. We visualize this survival process in Figure 5, which shows that pitchers who

have a bad pitching day (mean game wOBA larger than, say, 0.437) are much more likely

to be removed earlier in the game. Note that the six mean game wOBA bins in Figure 5

are six evenly sized quantiles of mean game wOBA. So, a starting pitcher who remains in

3TTO pitched better that day over average than one who is pulled prior to 3TTO, and it

is plausible that the former pitcher would be better in 3TTO than the latter pitcher. On

this view, our approach underestimates the magnitude of continuous pitcher decline. But,

as discussed in Section 2.3, our goal is to estimate the discontinuous decline parameters

β, which our approach does a reasonable job of; we leave a more elaborate estimation of

continuous pitcher decline to future work.

Figure 5: Histogram of the batter sequence number t at which a starting pitcher exits the
game, for different bins of mean game wOBA.

Furthermore, our analysis does not account for pitch selection, which, for some pitchers,

evolves over the course of the game. Changes in pitch selection may be a response to pitcher

fatigue: for instance, the more tired a pitcher becomes, the more difficult it may be to

throw a fastball. Alternatively, pitchers might change their pitches in response to perceived

batter learning: to prevent batters from learning his tendencies, a pitcher can perhaps be

more unpredictable by changing his pitch selection over the game. A more fine-grained

analysis would capture this within-game change in pitch selection, perhaps by modeling

pitcher quality as a function of pitch selection. Nonetheless, modeling a pitcher’s continuous

change over the game may simultaneously adjust for pitcher fatigue and an evolving pitch
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selection.

Additionally, recall that we use an empirical Bayes approach to quantify batter and pitcher

quality. Specifically, early in the season we let a player’s quality be close to his average

wOBA from the end of his previous season, and later in the season be closer to his current

average wOBA. Our current analysis shrinks to the prior season’s average wOBA similarly

for all players (e.g., the prior variance is constant). But, the more we’ve observed a player

in the past, the more confident we should be in the player’s ability this season. Thus a

more fine-grained analysis would employ a more flexible empirical Bayes approach which

allows the prior variance to vary in the number of last season’s plate appearances (e.g., see

Brown (2008)). Additionally, a more elaborate approach may shrink to some combination

of a pitcher’s previous season mean wOBA and the overall mean of pitcher quality from the

previous season, rather than shrinking to just the former.
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A Our code and data

Our code is available on Github3. The data wrangling folder of the Github repository

contains our dataset processing, including the Retrosheet data scraper. The data folder

further processes the full dataset into a smaller dataset relevant for this paper. Finally, the

model positive slope prior folder contains our data analysis, including our Stan model.

The final datasets used in this paper are available for download4. The cleaned dataset of

3https://github.com/snoopryan123/TTO_
4https://upenn.app.box.com/folder/144635702840?v=retrosheet-pa-1990-2000
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all MLB plate appearances from 1990 to 2020 is retro final PA 1990-2020d.csv. The

datasets TTO dataset 410.csv and TTO dataset 510.csv are processed subsets of the large

dataset which we use to fit our models.

B Model simulation study

We conduct a simulation study to assess the capacity of our model (Equation (2)) to estimate

time through the order penalties of various sizes. Specifically, we simulate data consistent

with different TTOPs and verify that our posterior estimates are close to the data generating

parameters.

Simulation setup. For our first simulation, we generate data consistent with continuous

pitcher fatigue and no TTOP for any of the plate appearance outcomes by setting β2k =

β3k = 0 for each k ̸= 1. In our second simulation, for each k ̸= 1, we set the β2k and β3k so that

the resulting xwOBA curves display TTOPs consistent with Tango et al. (2007)’s findings

of about 10 expected wOBA points between successive times through the order. Finally, for

our third simulation, we set β2k and β3k so that there is no 2TTOP (in terms of xwOBA)

but a large 3TTOP of about 50 wOBA points. For each simulation, we set the values of

the α0k’s, α1k’s, and ηk’s in a way that is consistent with observed data. Additional details

about the simulation setup, including the data generating parameter values, are available in

Appendix C.

For each simulation, we generate 225 full seasons worth of data. We fit our model to 80% of

the data from each simulated season and evaluate our fitted model’s predictive performance

on the remaining 20%. We further assess how well our fitted model recovers the function

xwOBA(t,x) for a set of average confounder values.

Simulation results. In all three simulation studies, we reliably recover the data generat-

ing parameters: averaged across all parameters, the estimated frequentist coverage of the

marginal 95% posterior credible intervals exceeds 92% in each study. Importantly, the cov-

erage of the 95% posterior credible intervals for the discontinuity parameters β2k and β3k

exceeds 91% in each study. That is, for each simulated dataset, the 95% credible intervals

for the β2k’s and β3k’s usually contain the true data generating parameters. Furthermore,

our model demonstrates good predictive capabilities (see Appendix C for details).

Simulation visualization. In each simulation, we visualize the trajectory of posterior

expected wOBA over the course of the game for an average batter on the road facing an
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average pitcher with the same handedness. That is, we plot the sequence {xwOBA(t, x̃)}27t=1

where

x̃⊤ = (x(b), x(p), 1, 0). (18)

Figure 6 shows the sequence of posterior means, 50%, and 95% credible intervals of xwOBA(t, x̃)

based on a single simulated dataset from each simulation setting. We overlay the true val-

ues of xwOBA(t, x̃), computed from the data generating parameters, to each plot. We see

that in each of the three simulation studies, we recover the true underlying expected wOBA

trajectory.

Figure 6: Trend in xwOBA over the course of a game from our first, second, and third
simulation studies. The red dots indicate the true underlying expected wOBA values, the
white dots indicate the posterior means of the xwOBA values, the thick black error bars
denote the 50% posterior credible intervals, and the thin black error bars denote the 95%
posterior credible intervals.

C Simulation details

C.1 Data generating parameters

The exact data generating parameter values of β2k and β3k for our three simulation studies

are shown in Table 4.

24



Table 4: The data generating parameter values of β2k and β3k in each of our three simulations.

k = BB k = HBP k = 1B k = 2B k = 3B k = HR
β2k for sim 1 0 0 0 0 0 0
β3k for sim 1 0 0 0 0 0 0
β2k for sim 2 2/65 0 4/65 2/65 0 2/65
β3k for sim 2 1/15 0 2/15 1/15 0 1/15
β2k for sim 3 0 0 0 0 0 0
β3k for sim 3 1/10 1/10 3/10 1/10 1/10 3/20

Furthermore, in each of our simulation studies, we assume that pitchers fatigue linearly over

the course of a game. The particular true parameter values of α0k and α1k used in each of

our simulation studies are shown in Table 5.

Table 5: The data generating parameter values of α0k and α1k in each of our three simulations.

k = BB k = HBP k = 1B k = 2B k = 3B k = HR
α0k -0.601 -1.804 -0.475 -0.943 -1.510, -0.565
α1k 0.00271 0.0122 0.00354 0.00635 0.0223 0.00926

Finally, in each of our simulation studies, we set the value of η to mimic fitted values from

observed data. The particular true parameter values of η used in each of our simulation

studies are shown in Table 6.

Table 6: The data generating parameter values of η in each of our three simulations.

k = BB k = HBP k = 1B k = 2B k = 3B k = HR
ηbat quality 0.865 1.408 0.371 0.856 1.399, 1.525
ηpit quality 1.128 1.987 1.050 1.472 3.286 1.850
ηhand -0.201 0.166 -0.0164 -0.0420 -0.462 -0.0958
ηhome 0.0792 -0.0776 0.0245 -0.00103 0.107 0.0230

C.2 Predictive performance on simulated data

Our model demonstrates good predictive capabilities. To get a general sense of our model’s

performance, we use out-of-sample cross entropy loss, given by

− 1

n

n∑
i=1

7∑
k=1

1{yi = k} · log
(
P(yi = k)

)
. (19)
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For each of our three simulations, the average cross entropy loss over each of our 25 datasets

is 1.05, 1.06, and 1.07, respectively. Using the empirical outcome probabilities yields an

average out-of-sample cross-entropy loss of 1.06, 1.08, and 1.08, respectively, for each of our

three simulations. It is reassuring that our model (barely) outperforms the observed base

rates.

D Observed model fit details

D.1 The impact of pitcher decline on the outcome of a plate ap-

pearance

In this Section, we quantify the effect size of pitcher decline over the course of a game, again

using the 2017 season as our primary example.

In particular, we examine how the probability of each outcome of a plate appearance changes

over the course of a game. Specifically, we use the posterior distribution of P(y = k|t,x),
defined in Formula (6), to characterize the amount by which pitchers decline within a game.

In particular, we compute the posterior distribution of the change in the probability of

outcome k ̸= 1 from 1TTO to 2TTO, over average,

D12(k,x) =
1

9

18∑
t=10

P(y = k|t,x)− 1

9

9∑
t=1

P(y = k|t,x), (20)

and the similarly defined D23(k,x), which captures the change in the probability of outcome

k ̸= 1 from 2TTO to 3TTO, over average.

In Figure 7 we plot the posterior distribution of D12(k, x̃), using plate-appearance-state

vector x̃ from Formula (12). From 1TTO to 2TTO, the probability of a single increases by

about 0.005, the probability of a home run increases by about 0.003, and the probability of

the other non-out categories change negligibly. With this, the probability of an out decreases

by about 0.01. So, there is a small decrease in pitcher performance on average from 1TTO

to 2TTO.
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Figure 7: The difference in probability of each plate appearance outcome between 2TTO
and 1TTO on average (assuming a batter of average quality on the road faces a pitcher of
average quality with a handedness match during each plate appearance). Equivalently, the
posterior distribution of D12(k, x̃). The red line denotes the mean, and the blue line denotes
0.

Similarly, in Figure 8 we plot the posterior distribution of D23(k, x̃). From 2TTO to 3TTO,

the probability of a single increases by about 0.005, the probability of a double increases

by about 0.004, and the probability of the other non-out categories change negligibly. With

this, the probability of an out decreases by about 0.01. So, there is a small decrease in

pitcher performance on average from 2TTO to 3TTO.
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Figure 8: The difference in probability of each plate appearance outcome between 3TTO
and 2TTO on average (assuming a batter of average quality on the road faces a pitcher of
average quality with a handedness match during each plate appearance). Equivalently, the
posterior distribution of D23(k, x̃). The red line denotes the mean, and the blue line denotes
0.

Additionally, we examine how the expected wOBA of each outcome of a plate appearance

changes over the course of a game. In particular, we compute the posterior distribution of

the change in the expected wOBA of outcome k ̸= 1 from 1TTO to 2TTO, over average,

D′
12(k,x) =

1

9

18∑
t=10

1000 · wk · P(y = k|t,x)− 1

9

9∑
t=1

1000 · wk · P(y = k|t,x), (21)

where wk is the wOBA weight for outcome k as discussed in Section 2.4. Similarly, we define

D′
23(k,x), which captures the change in the expected wOBA of outcome k ̸= 1 from 2TTO

to 3TTO, over average.

In Figure 9 we plot the posterior distribution of D′
12(k, x̃), using plate-appearance-state

vector x̃ from Formula (12). From 1TTO to 2TTO, the expected wOBA points of a home

run increases by about six, the expected wOBA points of a single increases by about four,

and the other non-out categories change negligibly. Note that the expected wOBA of an out

28



doesn’t change because an out is worth zero wOBA.

Figure 9: The difference in xwOBA of each plate appearance outcome between 2TTO and
1TTO on average (assuming a batter of average quality on the road faces a pitcher of average
quality with a handedness match during each plate appearance). Equivalently, the posterior
distribution of D′

23(k, x̃). The red line denotes the mean, and the blue line denotes 0.

Similarly, in Figure 10 we plot the posterior distribution of D′
23(k, x̃). From 2TTO to 3TTO,

the expected wOBA of a double and single increases by about five, the xwOBA of a home

run increases by about three, and the other categories change negligibly.

Figure 10: The difference in xwOBA of each plate appearance outcome between 3TTO and
2TTO on average (assuming a batter of average quality on the road faces a pitcher of average
quality with a handedness match during each plate appearance). Equivalently, the posterior
distribution of D′

23(k, x̃). The red line denotes the mean, and the blue line denotes 0.
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Furthermore, we aggregate the increase in the probability of each non-out plate appearance

outcome k from one TTO to the next via expected wOBA, defined in Equation (8). In

particular, recall from Section 3.2 that a pitcher declines by about 13 wOBA points from

one TTO to the next, over average, which is consistent with the effect sizes from Figures

7 and 8. Figure 11 illustrates this via a histogram of the posterior samples of D12(x̃) and

D23(x̃). We see that virtually all of these samples are positive, suggesting that average pitcher

performance declines from one TTO to the next, and that the means of these distributions are

around 13 wOBA points, which are consistent with Tango et al. (2007)’s findings. Specifically,

our model suggests that the expected wOBA points of an average plate appearance increases

by 13.4 (with a 95% credible interval of [7.78, 19.0]) from the first TTO to the second, and

by 12.5 (with a 95% credible interval of [5.98, 18.7]) from the second TTO to the third.

(a) (b)

Figure 11: The posterior distribution of the mean batter improvement, or mean pitcher de-
cline in xwOBA, from 1TTO to 2TTO (left) and from 2TTO to 3TTO (right). Equivalently,
the posterior distributions of D12(x̃) (left) and D23(x̃) (right) (see Formula (13)). The red
line denotes the mean, and the blue line denotes 0. We see that batters improve relative to
the pitcher by about 13 wOBA points on average from one TTO to the next.

D.2 Predictive performance on observed data

To get a general sense of our model’s performance on observed data, we run a five-fold

cross validation to predict the probability of each plate appearance outcome for each plate

appearance in 2017. The out-of-sample cross entropy loss, given by Formula (19), is 1.035.

We compare our model’s cross entropy loss to that of other prediction strategies to better
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understand its performance. Consider a five-fold cross validation using the base rates of

each plate appearance outcome. So, for each fold, find the proportion of plate appearances

in which each outcome occurs, and compute the cross entropy loss using these base rates

on the remaining out-of-sample plate appearances. For reference, in 2017, an out occurs

in 67.6% of plate appearances, an uBB 7.8%, a HBP 0.9%, a 1B 14.9%, a 2B 4.8%, a 3B

0.45%, and a HR in 3.5% of plate appearances. The out-of-sample cross entropy loss of the

base rates of each outcome is 1.042. So, our model very slightly outperforms the base rates.

Finally, note that our model using raw batter and pitcher quality covariates, rather than

logit-transformed batter and pitcher quality covariates, has a cross-validated out-of-sample

cross entropy loss of 1.040. That the logit-transformed player quality covariates have better

out-of-sample predictive performance helps justify using the logit transform.

D.3 The trend is persistent across years

In Figure 12 we show boxplots of the posterior distributions of the discontinuity parameters

β2k and β3k − β2k from our model (Equation (2)) fit separately on data from each season

from 2012 to 2019. For some outcomes (e.g. walks), the posterior distributions are tightly

concentrated around 0, and for other outcomes (e.g., triples and hit-by-pitches, which are

rare events), the posterior distributions are quite wide, which is compatible with a large effect

in either direction. Overall, the posterior distributions of the discontinuity parameters cover

both positive and negative values, and most of them are centered around 0. In particular, we

don’t see what we would expect to see if there were strong evidence for a TTOP (i.e., we don’t

see the posterior distributions tighly concentrated around a positive number). Ultimately,

we do not find the posterior distributions in Figure 12 to be consistent with large, systematic

time through the order penalties.

In Figure 13 we plot the posterior distribution of xwOBA over the course of a game according

to our model fit separately on data from each year from 2012 to 2019. We see that expected

wOBA increases steadily over the course of a game, without significant discontinuity (in

particular, significant upward discontinuity) between times through the order. The 2018

season is the only season in which we see an upward discontinuity in the posterior means,

which occurs between 2TTO and 3TTO. This discontinuity, however, lies inside of the

credible intervals and so is not significant.
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Figure 12: Posterior boxplots of the TTOP discontinuity parameters from Model (2), fit
separately on data from each year from 2012 to 2019. The blue line denotes 0. We see that
each posterior distribution covers both positive and negative values.

Figure 13: Trend in expected wOBA over the course of a game for an average batter facing
an average pitcher of the same handedness on the road, according to the model from Equa-
tion (2) fit on separately on data from each year from 2012 to 2019. The white dots indicate
the posterior means of the expected wOBA values, the thick black error bars denote the 50%
credible intervals, and the thin black error bars denote the 95% credible intervals.

32



E Alternative models

E.1 A more flexible model: the indicator model

In Equation (2) we model pitcher decline over the course of a game as the combination

of discontinuous decline from each TTO to the next and continuous linear pitcher decline

across all the batters. A more flexible model wouldn’t enforce a particular functional form on

within-game pitcher decline. In particular, the most flexible model has a separate coefficient

for each batter t ∈ {1, ..., 27},

log

(
P(yi = k)

P(yi = 1)

)
=

27∑
t=1

αtkI (ti = t) + x⊤
i ηk. (22)

With this more flexible model, the qualitative results of our study don’t change. For instance,

as in Figure 4, in Figure 14 we plot the posterior distribution of the trajectory of expected

wOBA over the course of a game, according to the indicator model from Equation (22) fit

on data from 2017. We do not see a significant discontinuity in pitcher performance from

one TTO to the next. In other words, we don’t find evidence of a strong batter discontinuity

between times through the order. This trend is persistent across each year from 2012 to

2019.
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Figure 14: Trend in expected wOBA over the course of a game in 2017 for an average batter
facing an average pitcher of the same handedness on the road, according to the indicator
model from Equation (22). The white dots indicate the posterior means of the expected
wOBA values, the thick black error bars denote the 50% credible intervals, and the thin
black error bars denote the 95% credible intervals.

E.2 A more elaborate model: pitcher-specific and batter-specific

effects

In our model from Equation (2), we make the simplifying assumption that the trajectory of

within-game pitcher deterioration is the same across all pitchers and batters. Nonetheless, it

is likely that pitcher performance declines at different rates for different players. To account

for such heterogeneity, we extend our model by introducing player-specific rates of decline.

Specifically, we model

log

(
P(yi = k)

P(yi = 1)

)
= α0kp(i) + α1kp(i)ti + β2kb(i)I (ti ∈ 2TTO) + β3kb(i)I (ti ∈ 3TTO) + x⊤

i ηk,

(23)

where p(i) is the index of the pitcher and b(i) is the index of the batter in at-bat i. The

pitcher-specific continuous decline parameters and batter-specific discontinuity parameters
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have Gaussian priors, 

α0kp(i) ∼ N (α0k, σ
2
0k),

α1kp(i) ∼ N (α1k, σ
2
1k),

β2kb(i) ∼ N (β2k, σ
2
2k),

β3kb(i) ∼ N (β3k, σ
2
3k),

(24)

which themselves have priors,α0k, α1k, β2k, β3k ∼ N (0, 25),

σ2
0k, σ

2
1k, σ

2
2k, σ

2
3k ∼ half N (0, 1).

(25)

With this more flexible model, the qualitative results of our study don’t change. For instance,

as in Figure 4, in Figure 15 we plot the posterior distribution of the trajectory of expected

wOBA over the course of a game, according to the player-specific model from Equation (23)

fit on data from 2017. In particular, we use the posterior distributions of the prior means α0k,

α1k, β2k, and β3k to compute the xwOBA trajectory for an average pitcher facing an average

batter. We do not see a significant upwards discontinuity in expected wOBA from one TTO

to the next. In other words, we find little evidence for a strong batter discontinuity between

times through the order. This trend is persistent across each year from 2012 to 2019.
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Figure 15: Trend in expected wOBA over the course of a game in 2017 for an average batter
facing an average pitcher of the same handedness on the road, according to the model from
Equation (23). The white dots indicate the posterior means of the expected wOBA values,
the thick black error bars denote the 50% credible intervals, and the thin black error bars
denote the 95% credible intervals.
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