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ABSTRACT

In this paper, we present an improvement to Offensive Power Rating (OPR), a popular linear regression1

model for assessing team performance at a given event. One key assumption of linear regression2

is the independence of the errors, but in the FIRST® Robotics Competition (FRC) context, this3

assumption is not exactly true. Using data from all district events between 2009 and 2024, we model4

the unweighted errors as a function of tournament progression and generate weightings to improve5

the regression fit through Weighted Least Squares (WLS). The best weightings show that the most6

representative matches for a team’s overall performance are midway through the tournament. That is,7

the real clutch matches are in the middle.8

1 Introduction9

The FIRST Robotics Competition is an international high school robotics competition. Teams build a robot to play a10

new game released by FIRST each year. In the 2013 game, for example, robots were tasked with shooting frisbees and11

climbing a seven-foot-tall pyramid. After six weeks of building, teams take their robots to competitions, where they12

are ranked through a series of qualification matches. Qualification matches consist of six randomly selected robots13

divided into two opposing alliances of three teams each. To strategize effectively and play to each robot’s strengths,14

teams frequently need to make convenient, flexible, and accurate estimations of their partners’ overall performance15

without relying on large amounts of scouted, robot-level data. OPR uses linear regression to estimate how many points16

an individual robot contributes to an alliance in any given match. We will refer to a match as a qualification match17

competed by a particular alliance.18

1.1 Background19

Since Karthik Kanagasabapathy and Ian Mackenzie of FRC team 1114 developed "calculated contribution" in 2004,20

teams have been using linear regression to measure a team’s scoring ability. Calculated contribution, generally21

considered the first application of linear regression in FRC, improves on average score by accounting for alliance22

partners. The first public description (Weingart, ) of similar linear algebra came in 2006 from Scott Weingart of FRC23

team 293 on a Chief Delphi post which coined the term "Offensive Power Rating". Weingart’s terminology for linear24

regression in FRC rose to popularity, commonly abbreviated as OPR. However, the usual formulation for the regression25

design matrix uses teams on the columns and matches on the rows (as described by Karthik (Kanagasabapathy, )),26

where Weingart’s formulation used teams on both the rows and the columns. In 2017, Eugene Fang detailed the math27

behind OPR in a blog post for TheBlueAlliance (Fang, ) (TBA), which has become the standard definition of linear28

regression for FRC.29
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1.2 OPR as Linear Regression30

By definition, OPR is a multiple linear regression. To see this, reference Section 5.2 (pg 130-133) of Sheather31

(Sheather, ), which shows the calculation behind multiple linear regression. Looking at the solved equation for β,32

β̂ = (X ′X)−1X ′Y , we see that the TBA blog solved equation to find OPR, x = M−1s, follows a very similar structure.33

With β and x as the OPR value, M and (X ′X) as the vector of alliance lineups, and s and X ′Y as the vector of alliance34

scores, Sheather’s and TBA’s explanations are identical. See (Krotkov, ) for a demonstration of the equivalence on data.35

1.3 Motivation36

Other metrics have so far proven more effective than OPR for match prediction (Statbotics, ), in large part because they37

incorporate historical data. For a simplified example: knowing that FRC team 254 has won 5 world championships38

is very relevant to making a good prediction about their performance in a given match. However, regression does39

not consider data from previous seasons or previous events. OPR will not see a difference between a multiple world40

champion and playoff bubble team unless it is given match data from the relevant event. This highlights the primary41

value of regression methods in FRC: summarizing team performance at a given event. This isn’t to say we should42

disregard match prediction! Match prediction is extremely useful as an empirical test for our methods; but if the goal is43

accurate match prediction, regression is not the best tool available. To improve the quality of our estimate, we can focus44

on the model’s assumptions and their validity in an FRC context.45

One of the key assumptions of linear regression is that the errors εi are independent and identically distributed with46

constant variance. That is, the prediction error for each match does not depend on any other matches, and that the spread47

of the errors does not change over the course of a tournament. In FRC, this is mostly true: matches are well isolated48

from each other, and the challenges that teams face over the course of the event do not change on average. However,49

teams do gain experience over the course of the event, make adjustments, and change strategies. Anecdotally, teams50

"settle in" to their most representative performance after their first few matches, with earlier matches contributing less to51

overall performance. This dynamic likely influences the distribution of the errors so that it is not constant. Accounting52

for this non-constant error could improve the linear approximation of team quality.53

1.4 Weighted Least Squares54

WLS is a statistical method used to improve regressions by modeling nonconstant residual variance. This method55

requires the user to know the variance structure of the response in order to model nonconstant variance - or to have56

a good approximation of it. Typically for cases that cannot be resolved by a transformation, each row of the design57

matrix is weighted proportional to the inverse variance of the errors (pg. 96, 97 (James, Witten, Hastie, & Tibshirani, )),58

giving less weight to the less precise observations. This theoretical quantity is usually best approximated by the inverse59

variance of the residuals. A residual is defined as the difference between the value predicted by a linear regression60

model and the observed (true) value. The residual in our context is the difference between the score predicted by OPR61

and the actual alliance score.62
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WLS is generally implemented by dividing the diagonal of the regression covariance matrix by the weights, which63

directly downweights the least precise observations. This has computational advantages because it deals directly with64

the regression formulation. However, WLS can be equivalently implemented (Krotkov, ) by "row-replication", which65

duplicates rows an integer number of times to represent the additional weight placed on that row. This equivalent66

formulation highlights the intuition behind weighted least squares: putting additional importance on each row of the67

design matrix proportional to the size of the weight. Row-replication also has a flexibility advantage. Applying the68

weights to the covariance matrix requires a regression setting, while row-replication can be applied without the context69

of regression.70

2 Methods71

2.1 Data72

Our analysis used qualification match data (alliance lineups and final total scores) from every district event that occurred73

between 2009 and 2024. Districts have exactly twelve qualification matches for each team, which makes comparison74

between events more consistent. To ensure that scores are comparable across different years, we standardized the scores75

of each event.76

2.2 Weight Estimation77

WLS allows us to remove the assumption of residual independence, if we can appropriately weight the rows of the78

design matrix. This means that we need a principled way to find weights that describe the distribution of the residuals.79

We computed descriptive weights in two ways: residual variance binning and linear weight smoothing. While each way80

provided a different set of weights, the second (linear weight smoothing), extends the first (residual variance binning).81

2.2.1 Residual Variance Binning82

Optimal weights for WLS are proportional to the inverse variance (see (James et al., ) pg. 97) of the error for that83

data point. To approximate this, we calculate the variance of the residuals of the unweighted linear model in six84

sequential bins. To bin the residuals, we give each match a "match percentile", which is match_number
n_matches ; intuitively,85

this is the percentage of progress through the tournament at which the match takes place. Then, we evenly divide the86

alliance-matches into six bins based only on their match percentile. Since each team plays twelve matches, six bins87

allows for an average of two matches from each team to be in each corresponding bin. This balances the granularity to88

avoid hyper-analyzing the differences or failing to recognize the trend.89

Taking the variance of the residuals in each bin provides a numerical way to measure the reliability of OPR. To reflect90

the general trend of the residuals with a unique set of weights, we take the reciprocal of each binned variance.91
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2.2.2 Linear Weight Smoothing92

Variance binning directly approximates the model’s variance; but this could under-smooth and overfit the data. To93

mitigate this, we also compute linearly smoothed weights, taking the linear regression of the residual variances. Linear94

weight smoothing significantly reduces the number of weight combinations to test on the OPR model when trying to95

find the optimal set of weights, providing a more efficient process than residual variance binning in most cases.96

Linear weight smoothing continues from where variance binning leaves off. By graphing the residual variances against97

event progression percentile, we can then fit an appropriate function onto the coordinate points. With the residual98

variances "smoothed" with linear approximation, we then obtain the six variances (one for each bin) projected by99

residual variance graph. The reciprocals of the projected residual variances join to form a set of weights unlike the100

weights provided by variance binning.101

2.3 Weight Evaluation102

To find the best weights, we are interested in risk, a model’s error on the test data, rather than its loss, a model’s error on103

the training data. We utilized two methods to evaluate the weighted OPR model, both of which make judgments based104

on the risk produced by both the weighted and unweighted OPR models. The key difference between the two methods105

is how the risks are calculated.106

For both methods, to contextualize the performance of the weighted model against the unweighted model, we take the107

ratio Runweighted

Rweighted
, where R is some estimate of a model’s risk. This represents how much the weighted model improves108

on the unweighted model; since a higher risk is worse (higher error), we can interpret this ratio as a proportion.109

2.3.1 Test Mean Squared Error110

Mean squared error (MSE) is a measure that can adequately characterize the accuracy of a model. We calculate MSE by111

taking the average of the squared residual variances.112

MSE only measures the error of a model applied on a fixed and complete dataset. Consequently, it becomes vulnerable113

to overfitting and does not evaluate models based on their ability to make predictions for unseen data. We are interested114

in using methods that do a better job of estimating our model’s prediction risk, rather than just its in-sample MSE.115

Test-set cross validation is a method that avoids these issues by splitting data into a training and testing set; we train the116

model only on the training data, reserving the testing data to evaluate the model.117

Combining both of these methods leads to test MSE, which is the MSE of only the test set. However, withholding a test118

set sacrifices a decent proportion of the complete data for training, resulting in high variance.119

2.3.2 Leave-One-Out Cross Validation120

Leave-One-Out Cross Validation (LOOCV) is another effective risk estimate from machine learning. Like test MSE,121

LOOCV splits the data into a test and training set, but instead uses only one data point as the test set. This method122
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Figure 1: Leave One Out Cross Validation Diagram

trains and produces a linear regression model using all but one of the matches in an FRC event (e.g. in a 160-match123

event, 159 matches are used for training). It then tests the trained model by predicting the omitted match’s score and124

recording the residual. LOOCV repeats this process for each match in the event so every match is tested once. We125

prefer LOOCV over test MSE because it uses nearly all of the data, therefore maintaining low variance. LOOCV is126

detailed visually in 1 and mathematically in pages 200-203 of (James et al., ).127

2.4 Weight Optimization128

To pick the number of bins we used hyperparameter tuning with the mean LOOCV as the loss function. However, once129

you have b, picking the optimal weight in each slot poses a computationally difficult challenge, in O(nb). This makes130

an exhaustive grid search difficult, so we attempted three solutions to optimize an easier problem and approximate the131

optimal weights. First we considered single-bin optimization, a strategy that only changed one from the originally132

estimated weights. Then we considered a stepwise simultaneous solution which optimizes each bin in the context of the133

originally estimated weights and then picks the independently optimized value for each bin. Finally, we considered134

sequential weight fixing, which optimizes in a single bin and fixes that optimized value for the rest of the optimization.135

3 Results136

3.1 Exploratory Data Analysis137

Figure 2 shows the linear relationship between the qualification match percentile and the resulting squared residual.138

The line of best fit has a slope of -0.031 (p < 0.001), demonstrating that qualification matches that occur later in the139

tournament have smaller squared residuals. The negative slope means that on average, the error decreases as match140

percentile increases, which confirms a measurable relationship between match percentile and the residual produced.141

This supports our assertion that weighting reduces variance by determining how important each match is and assigning142
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Figure 2: Simple Linear Regression on Raw OPR Residuals by Match Percentile

its appropriate relevance in calculations. Figure 2 confirms the advantage of weighting late-tournament matches more143

heavily by observing how they have slightly less variance overall, thus reducing error and improving predictions.144

3.2 Weight Estimation145

In Figure 3a, the residual variance is plotted for each of the six bins. These values represent the spread of error within146

each bin. The smaller this spread, the more consistent the unweighted OPR residuals. Overall, we see a parabolic147

trend: the residual variances are very high towards the beginning (bins 1 and 2), low towards the middle (bins 3 and 4),148

and increase somewhat again towards the end of the tournament (bins 5 and 6). This means that the unweighted OPR149

estimations are the least consistent at the extremes of a tournament, especially at the beginning. Hence, OPR should150

be given more weight for matches that fall in bins 3 and 4, and less weight for matches that lie further towards the151

beginning or end of the tournament. Linear weight smoothing produces a v-shaped variance graph with the reciprocals152

of the estimated weights, as shown in 3b.153

3.3 Weight Optimization154

Tuning over the number of bins between 2 and 15 found 12 to be the ideal number of bins, as shown in 4d. This makes155

intuitive sense because this data is based entirely on district performances, which each have 12 matches. Dividing156

span of matches into 12 bins approximately mimics the progress of the tournament in "rounds" where each robot plays157

approximately once.158

Stepwise optimization performed the best of our optimization strategies, achieving a mean LOOCV of 0.666 as opposed159

to single-bin optimization’s 0.667 and sequential weight fixing’s 0.669. The optimal weights found were the following:160

wstepwise = (1.90, 2.56, 2.94, 3.13, 3.24, 3.20, 3.17, 3.15, 2.92, 2.79, 2.66, 2.43)
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Figures: Weighting Estimation & Evaluation

(a) Residual Variance Pattern Throughout An Event (b) Linear Approximation of Residual Variances

Figure 3: Residual Variance Patterns

3.4 Test Mean Squared Error161

Recall from section 2.3.1 that we calculate Test MSE by producing a model based solely on the training data and162

computing that model’s MSE from the testing data. In figure 4a we plot the ratios between the unweighted and weighted163

event test MSEs. The mean of the distribution is 1.004, indicating that weighted OPR is .4 percent more accurate than164

unweighted OPR on average. The 95% confidence interval around the mean value is computed by bootstrap(Lomuscio,165

).166

3.5 Leave-One-Out Cross Validation167

An Event-Normalized LOOCV Error Ratio above 1 suggests that weighted OPR has a measurable predictive advantage168

over unweighted OPR. Figure 4b shows a mean LOOCV ratio of 1.004, suggesting that on average, weighting does169

improve OPR predictions by 0.4% as directly compared to its unweighted counterpart. The 95% confidence interval170

around the mean value is computed by bootstrap(Lomuscio, ).171

Figure 5 shows the LOOCV ratio broken down by year. In nearly all cases, the binned LOOCV ratios are larger than172

the linear ratios, confirming that bin weighting outperforms linearized weights. Furthermore, 2010 is the only year173

where the binned LOOCV ratios are below 1. Although this implies that raw OPR possesses an advantage here, there174

were only eight events run this year - the small sample size makes it difficult to make confidence inferences based on175

that year. Stepwise optimization extracts improved performance from games favorable for OPR (with linear, separated176

scoring like 2019, 2022, and 2016) at the cost of worse performance when the key assumptions of OPR are invalid, like177

in 2014 or 2018.178

Figure 4c shows the percentage improvement of weighted OPR over raw OPR over time. The size of each dot scales179

with the number of events for that year recorded in the data, which is the number of district events played that year. The180

blue dotted line is the average of the data. The only year with a negative percent improvement was 2010; however, note181
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(a) Test MSE Ratio (b) Leave One Out Cross Validation Ratio Distribution

(c) Weighting Percent Improvement over Raw OPR (d) Tuning for the number of bins

Figure 4: Weighting Evaluations

that before 2014 no year had more than 20 district events. As the number of events grows, we see the improvement182

from weighting stabilize on average.183

4 Discussion and Conclusion184

Independent residuals is a key assumption for linear regression. Under this assumption, linear regression is extremely185

efficient. However, we proved that the residuals of the OPR model are in fact not independent. Taking advantage of this186

invalid assumption, we can lean into the matches in which OPR is most predictive, leading to an improved model. The187

weightings that performed the best followed an asymmetric, roughly parabolic shape, with by far the least weight on188

very early matches and the most weight on matches midway through the tournament.189

Weighting OPR based on match recency showed a consistent, but small improvement over unweighted OPR at district190

events between 2009 and 2024. Weighted Least Squares improved our estimation of teams by 0.015 Crescendo points191

and impacted teams’ OPRs by about 0.2 points. This is not a large change, but it shows that even an unoptimized192

weighting can improve on unweighted OPR.193

We found that the variance of unweighted OPR residuals follows a similar pattern in every year we tested 5. Notably,194

weighting improves OPR independent of OPR’s value as a metric in a given year. For example, OPR did very well in195

2022 and poorly in 2017, but the accuracy of OPR increased similarly with weighting for both years 4c.196
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Figure 5: LOOCV Ratios between Unweighted and Weighted OPR

4.1 Limitations197

WLS is only as good as its weights. We identified good weightings using stepwise optimization, but did not numerically198

optimize to find the best weightings over a full grid. For our first weighting model, residual variance binning, the199

computational cost to optimize the weighting over b bins is in O(nb). This would take around four days of computation200

over a reasonable grid, which was outside our scope.201

To make optimization easier, we tried weight linearization (3b), which simplifies our search space. Instead of optimizing202

over b bins, we would optimize over two slopes and two intercepts, for O(n4). However, this simplification trades203

accuracy for optimization speed. In both cases, more optimization is required before we find the numerically best204

weights.205

4.2 Next Steps206

The next step to improving our weighting is tuning the slopes and intercepts of the piecewise linear function using cross207

validation. With considerable computing resources, it would also be worthwhile to brute-force optimize over the binned208

weights.209

In a broader scope, the primary limitation of linear regression in an FRC context is small sample size. Teams almost210

never play more than twelve qualification matches each in a single tournament, and while simple linear regression is an211

efficient estimator, it doesn’t stabilize until late in the tournament. To make a more useful single-event summary for212

FRC, we need to continue to reduce the variance, to make a model that stabilizes faster. However, per the Gauss-Markov213

theorem (Taboga, ), we know that simple linear regression is the minimum variance unbiased linear estimator. Therefore,214
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to improve on the variance of that estimator, you either need to accept bias, similar to how ELO models incorporate215

historical information, or adopt a nonlinear model. Both options provide promising avenues to improving on current216

regression methods in FRC.217

4.3 Applications Outside the Regression Context218

Any set of weights can be used to create a design matrix with repeated data entries, where the weighting vector would219

determine how many times a set of matches within a bin should be duplicated. Running simple linear regression on this220

matrix is equivalent to running WLS on the original match matrix.221

While WLS would use a set of optimized weights to compute OPR coefficients immediately, row replication would222

generate a design matrix with duplicated rows before applying simple linear regression to output the same coefficients.223

Using row replication allows us to apply this data in a nonregression context and use models that incorporate higher224

biases to find more accurate results.225
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5 Technical Appendix226

Code for implementing weighted least squares for OPR can be found in the scoutR repo, at227

scoutR/markdown/opr_weighting. To create the data file district_quals_09_24.rda, use this script.228

Code for hyperparameter tuning can be found here.229

6 Contact230

To reach out to the Girls of Steel Data Science team, email Girls of Steel.231

For questions or for help replicating our work, email Gabriel Krotkov.232
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