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Abstract:  6 

This study develops a predictive model for elite badminton match outcomes to identify the key 7 

performance drivers in the sport. Using a comprehensive dataset of 3,761 men's singles matches from 8 

the BWF World Tour (2018-2021), features have been engineered to capture player skill, via custom 9 

Elo rating system, experience, recent form and match context. The Elo was then benchmarked against 10 

logistic regression and an optimized XGBoost classifier, with evaluations tested on a held-out test set. 11 

The XGBoost model achieved superior prediction accuracy of 76.49%, statistically improving upon 12 

traditional methods.  13 

 

Crucially, beyond predictive accuracy, the model’s feature importance analysis reveals a definitive 14 

hierarchy of factors influencing wins across tournaments and varying levels. Long term player skill 15 

and career experience are the primary determinants, substantially outweighing short term influences 16 

and changes in form and hot streaks, as well as exceeding contextual factors like tournament level and 17 

qualification rounds.  18 

 

These findings challenge the traditional emphasis on “hot-hand” momentum, providing data-driven 19 

evidence that sustained skill and accumulated experience are more critical for victory. The results 20 

offer a practical framework for strategic decision-making by coaches, talent scouts, and sports 21 
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analysts, highlighting the value of machine learning not just for prediction, but for generating 22 

actionable insights into athletic performance.   23 

 

Keywords: badminton, sports analytics, machine learning, prediction, XGBoost, Elo rating, feature 24 

importance, “hot hands”. 25 

 

1. Introduction 26 

Badminton’s global popularity is undeniable, with nearly 220 million regular worldwide players along 27 

with its status as a premier Olympic sport. At elite badminton, the margin between victory and defeat 28 

is exceptionally narrow, most often determined solely by a limited critical set of points in high 29 

pressure extreme environments. As a result of this complexity, match prediction and player 30 

evaluations have been placed in the realm of intuition from experts, experienced coaches and 31 

narratives about “momentum” and “current form” pushed by commentators. However, with the rise of 32 

sports analytics and machine learning, there is a promising shift from intuition and anecdotal 33 

assessment to augmented, objective, data-driven insights. 34 

 

Applying quantitative models in sports has a rich history, from the initial development of the Elo 35 

system in chess (Elo, 1978) to creating sophisticated player tracking models now present across sports 36 

like baseball (Lewis, 2003) and basketball (Silver, 2012). Within racket sports, tennis has constantly 37 

been the primary focus of countless studies, using techniques ranging from logistic regression 38 

(Klaassen & Magnus, 2001), neural networks and ensemble methods to predict match outcomes, most 39 

often derived using ranking points and serving statistics. In badminton, on the other hand, the 40 

analytical landscape is notably less developed. Although there are some studies that apply basic 41 

statistical models, they often fall short due to limited datasets or failure in applying the insights gained 42 

to explain the underlying performance drivers.  43 
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One of the main controversies in sports analytics is the “hot hands” fallacy (Gilovich, Vallone, & 44 

Tversky, 1985), which debates whether a player on a “winning streak” possesses a predictable 45 

momentum or is it simply due to a lucky statistical coincidence. This debate, like in other sports, still 46 

remains unresolved in the context of elite level badminton, representing a significant gap in research 47 

literature. 48 

 

This paper helps to address this gap by conducting a comprehensive analysis of elite level badminton. 49 

Beyond just the primary goal of prediction, this paper aims to answer a more fundamental question, 50 

what are the most important factors that determine success in elite badminton? To this end, the overall 51 

goal of the paper is twofold: first to develop and compare various predictive models, from an Elo 52 

baseline to an advanced machine learning approach, and second, to make use of the interpretability of 53 

the models to create a data-based hierarchy and importance of various features that influence 54 

performance. This can then be used to test the validity of conventional wisdom like the “hot hand” 55 

against quantifiable metrics like long-term skill and accumulated career experience.  56 

 

By analyzing a comprehensive dataset of 3,761 matches from the BWF World Tour, this research 57 

provides a foundational framework for understanding badminton performance. The findings offer 58 

actionable insights for coaches, players, and analysts, while contributing to the broader sports 59 

analytics literature by validating and refining established theories in a new, dynamic context. 60 

 

2. Materials and Methods 61 

2.1 Data Collection and Description 62 

The analysis made use of a comprehensive dataset for elite-level badminton matches, spanning from 63 

January 2018 to April 2021, with a total of 3761 matches. All data was obtained from the official 64 

BWF website using python with walkover matches excluded from the dataset. For model 65 
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development, the dataset was partitioned using an 80/20 stratified split, resulting in 3,008 training 66 

matches and 753 testing matches, preserving the distribution of match outcomes in both subsets. 67 

 

Models were trained on detailed statistics with 38 parameters per match. These included player-68 

specific information, such as nationalities and identification, game-specific information such as point-69 

by-point scoring, consecutive points and game point per game, as well as tournament-specific data 70 

such as name and level, including HSBC BWF World Tour events (Super 100 to Super 1000 levels), 71 

with match rounds ranging from qualification stages to finals. The detail and precision of information 72 

allowed detailed analysis for match prediction and robust feature engineering to capture both player 73 

skill and in-match dynamics. 74 

Table 1: Dataset Summary Statistics 75 

Category Metric Value Notes 

Scope Total Matches  3,761 Men’s Singles only 

Time Period Jan 2018 - Apr 2021 3+ years 

Focus Discipline Men’s singles Controlled analysis 

Unique Players  611  

Participants Represented Nationalities 69 Global representation 

Player experience range 136 matches  

Average matches per 

player 

6.02 Meaningful career spans 

Competition 

Level 

BWF Tour Super 100 1,338 (35.6%) Development circuit 

HSBC World Tour Super 

300 

1,053 (28.0%) Mid-elite 
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HSBC World Tour Super 

500 

680 (18.1%) Upper-elite 

HSBC World Tour Super 

750 

340 (9.0%) High elite 

HSBC World Tour Super 

1000 

305 (8.1%) Premier events 

HSBC World Tour Finals 45 (1.2%) Season finale 

Match 

Dynamics 

3-Set Matches 1313 (34.9%) High competitiveness 

Qualification Matches 771 (20.5%) Early-round analysis 

Avg. Total Points/Match 83.5 Match length consistency 

 

2.2 Feature Engineering 76 

To successfully analyse matches, features were engineered across three categories: player skill 77 

assessment, performance trends, and match context indicators. 78 

 

2.2.1 Elo Rating Implementation 79 

A custom Elo rating system was implemented so that player skill could be quantified dynamically 80 

based on match performance. The system was initialized with a baseline rating of 1500, following the 81 

convention established in its original application for chess (Elo, 1978).  82 

 

The K-factor, which controls how much ratings change after each match, was set to 32. This value is 83 

standard for individual sports where game-to-game volatility is expected, as it allows for meaningful 84 
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skill updates without excessive fluctuation (Lasek et al., 2013). Based on every match performance, 85 

Elo was updated using the standard Elo algorithm: 86 

 

𝐸𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑= 
1

1+10
(𝑅𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡−𝑅𝑝𝑙𝑎𝑦𝑒𝑟)/400 87 

𝑅𝑛𝑒𝑤 =  𝑅𝑜𝑙𝑑 + 𝐾 × (𝑆𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) 88 

 

where 𝑆𝑎𝑐𝑡𝑢𝑎𝑙 = 1 for win and  𝑆𝑎𝑐𝑡𝑢𝑎𝑙 = 0 for loss. 89 

 

Players with no prior match history in the dataset were assigned the baseline Elo rating of 1500, 90 

treating them as average players until their performance data suggests otherwise, which is a standard 91 

and conservative handling of the 'cold start' problem in rating systems. 92 

 

For implementation, a Google Apps Script was created and run for all 3761 matches, generating an 93 

Elo rating for all players, with values ranging between 1346.52 and 1998.85. The Elo system was 94 

selected for its proven effectiveness in individual sports and ability to dynamically capture skill 95 

evolution over time. 96 

 

2.2.2 Performance and Experience Metrics 97 

Recent Performance: Matches were processed chronologically to calculate the rolling 10-match win 98 

percentages. For each match, each player’s win rate in the previous 10 encounters was calculated. 99 

This required maintaining a window of match outcomes for all 611 players, which updated 100 

dynamically throughout the dataset. Calculating the win percentage over each player's last 10 matches 101 

captured short-term form and momentum effects, which was further used in analysis when 102 

implementing the logical regression and XGBoost. 103 

Career Experience: Total career matches were computed by counting each player's frequency across 104 

the entire dataset, providing a simple but effective proxy for tournament exposure. 105 
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2.2.3 Tournament Level & Competition Stage 106 

Tournament Level: To quantify tournament level, numeric mapping from BWF classification was 107 

used, Super 1000 = 1000, Super 300 = 300 etc. 108 

Competition Stage: Qualification matches were distinguished from main draws to test whether 109 

player performance differed across qualification matches to investigate into the conventional wisdom 110 

that qualification matches are more unpredictable as a result of higher expectations and pressure. 111 

 

2.3 Modeling Approaches  112 

The goal of my modeling was to predict the probability of a given player winning a match, for which, 113 

I used three models, increasing in complexity and thus picking up on more nuanced and varied 114 

relationships. 115 

Table 2: Feature Sets Used in Predictive Models 116 

Model Features Used 

Elo Prediction Player 1 Elo Rating,  

Player 2 Elo Rating  

Logistic 

Regression 

Player 1 Elo Rating,  

Player 2 Elo Rating,  

Tournament Level,  

Qualification Match  

XGBoost Player 1 Elo Rating,  

Player 2 Elo Rating,  

Player 1 Total Matches, 

Player 2 Total Matches, 

Player 1 Recent Win %, 

Player 2 Recent Win %, 
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Tournament Level,  

Qualification Match  

 

2.3.1 Baseline Model: Elo Rating Predictions 117 

The baseline for analysing the matches was the Elo rating system, where predictions for match 118 

outcomes were based on a simple rule such that the player with higher pre-match Elo was predicted to 119 

win. This model closely resembles the standard practice in sports rating systems and predictive 120 

analytics, and using solely Elo allowed me to create a competitive baseline, which could then be a 121 

benchmark for evaluating more statistically complex models and ML methods. 122 

 

2.3.2 Traditional Statistical Model: Logistic Regression 123 

To build a stronger model for predictions, the next model applied was logistic regression as a 124 

traditional statistical model. The model used the sigmoid function: 125 

𝑙𝑜𝑔(
𝑝

1− 𝑝
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4 + 𝑥4 126 

Where 𝑝 represents the probability of Player 1 winning, and 𝑥1through 𝑥4 correspond to the four 127 

engineered features used to train the model, (is_qualification, p1_elo_rating, p2_elo_rating, 128 

tournament_level). The model was implemented using scikit-learn 1.6.1 and default parameters (C = 129 

1.0, max_iter = 100, random_state = 42) and no feature scaling.  130 

 

Feature scaling was not applied for the logistic regression model. Although scaling can be beneficial 131 

for gradient-based solvers, the main goal for this model was interpretability. By using the unscaled 132 

features, the resulting coefficients directly represent the log-odds change per unit of the original 133 

feature (e.g., per one-point increase in Elo rating). This made the model more transparent and also 134 

made the outputs more directly actionable. Through this, logistic regression helped to create a 135 

baseline that was transparent and interpretable for comparison to the simpler Elo and more complex 136 

XGBoost. 137 
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2.3.3 Advanced Machine Learning: XGBoost 138 

For the final advanced stage in modelling, I employed the XGBoost (v3.0.5) model, a gradient 139 

boosting framework which is well known for its performance on tabular data. This model was trained 140 

using 8 parameters (p1_elo_rating, p2_elo_rating, p1_total_matches_played, 141 

p2_total_matches_played, is_qualification, p1_recent_win_pct, p2_recent_win_pct, 142 

tournament_level), double of the parameters used for logistic regression. Hyperparameter tuning for 143 

the XGBoost model was performed using BayesSearchCV from the scikit-optimize library over 50 144 

iterations.  145 

 

The search optimized the 'binary:logistic' objective function, exploring the following parameter space: 146 

n_estimators (50-300), max_depth (3-10), learning_rate (0.01-0.3), subsample (0.6-1.0), and 147 

colsample_bytree (0.6-1.0). The final optimized model used 217 estimators, max_depth = 3, 148 

learning_rate = 0.055, subsample = 0.6, and colsample_bytree=0.6. The relatively shallow tree depth 149 

suggests that the model captured meaningful interactions of features without overfitting to any 150 

statistical noise in the training data.  151 

 

2.4 Validation Framework 152 

For validation, I employed a 80/20 train-test stratified split. This stratification preserves the 153 

distribution of match outcomes in both subsets, ensuring a representative sample for both model 154 

training and evaluation. Model performance was evaluated mainly using prediction accuracy as a 155 

primary metric, along with a 5 fold cross-validation to assess robustness and generalisation capacity, 156 

which reported a mean accuracy ± standard deviation across folds. 157 

 

3. Results 158 

This section presents the evaluation of the performance of all three predictive models, the Elo-rating, 159 

logistic regression, and tuned XGBoost, on the held-out test set of 753 matches. The results 160 
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demonstrate and show a clear hierarchy and ranking in predictive capability. The machine learning 161 

model, XGBoost, as expected, shows a clear superiority over the logistic regression and Elo rating 162 

baseline. 163 

 

3.1 Overall Predictive Performance 164 

All three predictive models significantly outperformed the naive starting point of random guessing 165 

(50.30% accuracy), which demonstrates that the engineered features are capable of capturing 166 

meaningful signals for predictive analysis. As shown in Table 3, a clear performance hierarchy 167 

emerged, with model complexity correlating with accuracy. 168 

Table 3: Model Comparison 169 

Model Accuracy Improvement vs Baseline Key characteristic 

Random Guessing 50.3% - Theoretical minimum 

Elo Rating System 70.19% +19.89 Player skill based 

Logistic Regression 72.11% +21.81 Statistical modeling 

XGBoost (Optimized) 76.49% +26.19 Ensemble machine learning 

 

The tuned XGBoost model emerged as the best-performing predictor, achieving a test accuracy of 170 

76.49%. This represents a statistically significant improvement of 4.38 percentage points over the 171 

logistic regression model (p < 0.0001, McNemar's Test) and a 6.30-point improvement over the 172 

simple Elo baseline. The model's strong performance was further validated and boosted by its average 173 

accuracy of 73.92%(± 2.30%) during tuning, demonstrating its robust generalisability and low 174 

variance. 175 

 

The gap in performance between the optimized XGBoost and Elo baseline as well as logistic 176 

regression show statistical significance, although they may seem numerically low. This has helped to 177 



11 

demonstrate how machine learning models are adept at capturing non-linear relationships and the 178 

complex and intricate variance and relationships between features that could easily bypass rule-based 179 

systems like the Elo and statistical models like logistic regression.  180 

 

3.2 Model Calibration and Detailed Classification 181 

Apart from raw accuracy and precision, the XGBoost model also demonstrated well-calibrated 182 

predictions as evidenced by a low Log Loss of 0.485. The confusion matrix and classification report 183 

provide a more nuanced view of its performance. 184 

 185 

*Note: 0 = Player 1 Loss, 1 = Player 1 Win* 186 

Figure 1. Confusion matrix for the tuned XGBoost model on the test set. 187 

The model showed equivalent performance across the two classes, with nearly identical precision and 188 

recall for wins as well as losses: 189 

Precision: 77% for predicting wins, 76% for predicting losses 190 

Recall: 77% for wins, 76% for losses 191 

F1-Score: 0.77 for both classes 192 

This balance indicates that the model does not exhibit a significant bias towards either outcome, 193 

which is a crucial characteristic for a reliable forecasting tool. 194 

 

3.3 Determinants of Match Outcomes: Feature Importance Analysis 195 
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The relative importance of features of the tuned XGBoost model helps to create a data-driven ranking 196 

of the factors that truly influence match outcomes in elite level badminton. This in-depth 197 

understanding allows statistical analysis to move beyond mere predictions, to actually create a 198 

quantitative understanding of the sport’s dynamics. 199 

 200 

Figure 2. Relative feature importance from the tuned XGBoost model 201 

Table 4: XGBoost Feature Importance Rankings 202 

Feature  Importance Category Business Interpretation 

Player 1 Elo Rating 20.99%  Skill Overall player quality 

Player 2 Elo Rating 19.91% Skill Opponent strength 

Player 1 Total Matches 16.21%  Experience Career development 

Player 2 Total Matches 12.23%  Experience Opponent experience 

Qualification Match 8.23%  Context Pressure environment 
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Player 2 Recent Win % 7.82%  Form Opponent momentum 

Player 1 Recent Win % 7.67%  Form Current performance 

Tournament Level 6.94%  Context Competition quality 

 

3.3.1 The Primacy of Established Skill (Elo Ratings) 203 

The combined importance of Player 1 and Player 2’s Elo ratings, a total of 40.9% in importance, 204 

establish that long-term skill is the single most critical factor in match predictions. This further helps 205 

to consolidate the Elo rating system’s effectiveness in acting as a measure of a player’s intrinsic skill 206 

in badminton. This symmetry in the importance of the skill of not only Player 1 but also Player 2, 207 

indicates that the match, at its core, is a contest of relative skill levels. The model also gave an 208 

interesting insight that although a higher Elo doesn’t always mean victory, it does establish a powerful 209 

probability. 210 

 

3.3.2 The Critical Role of Career Experience 211 

Surprisingly, the combined feature of both players’ total matches played (combined 28.4%) emerged 212 

as the second most influential factor, significantly outweighing the impact of short-term performance 213 

and form in terms of Recent Win Percentage.  214 

 

This finding questions the conventional wisdom that “hot hands” and recent momentum are the 215 

primary drivers of success and players with a “Winning Streak” are more likely to continue winning. 216 

Instead, my research reveals that long term experience, gained from hundreds of high-pressure 217 

environments, by adjusting to varying playing styles, players gain a significant tactical advantage that 218 

helps to separate raw talent from accumulated experience. 219 
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3.3.3 The Contextual Over the Transient: Match Context vs. Recent Form 220 

One of the most interesting findings was the clear hierarchy of context and recent form. The fact that 221 

the indicator for qualification matches(8.2%) proved to be a more important feature for prediction, 222 

compared to the recent win percentage can be interpreted as: 223 

1. Pressure Environment: Qualification matches generally carry high-stakes and thus cause a 224 

lot of pressure on players, where an opportunity to enter the main draw will lead to elevated 225 

performance from underdogs, as well as heightened pressure on long-term favourites, 226 

increasing volatility. 227 

2. Data Artifact: “Recent Win Percentage” is possibly a nosier metric that solely captures 228 

streaks that may have originated due to weaker opponents or other transient factors, while 229 

“qualification” signals a reliable and specific match context 230 

3. Tournament Level's Influence: Tournament level, although it is the least important feature, 231 

it still contributes meaningfully in helping identify that players perform consistently and 232 

relative to their intrinsic skill and experience, however, the prestige of an event adds a layer of 233 

contextual meaning, influencing decisions. 234 

 

 

3.3.4 The Asymmetry of Features 235 

The analysis also revealed subtle asymmetries, for example, Player 1’s experience (16.2%) is valued 236 

more highly than Player 2’s experience (12.2%). This makes sense, since the match outcome from a 237 

player’s perspective does logically depend more on their experience and skill than their opponent’s, 238 

hinting at a psychological advantage inherent in how the data is structured. Similarly, Player 2's recent 239 

form (7.8%) is marginally more important than Player 1's (7.7%), which could suggest that the 240 

opponent's momentum is a slightly more important feature for prediction compared to the player’s 241 

own recent winning streak. These asymmetries warrant further investigation in future research. 242 
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4. Discussion 243 

4.1 Strategic Implications and Applications 244 

The primary contribution of this research isn’t predictive accuracy, but creating a data-driven decision 245 

making framework for competitive badminton globally. The analysis of the importance of features 246 

using the XGBoost model has helped to develop an unambiguous system to determine what actually 247 

guides elite badminton and at the same time challenging long held beliefs and assumptions. 248 

 

4.1.1 A Paradigm Shift in Talent Scouting and Development 249 

The model reveals that long-term skill (Elo) and career experience (total matches) are over four times 250 

more important than short-term form (recent win percentage). From this, we can gain the following 251 

insights: 252 

1. From "Form" to "Trajectory" in Scouting:  253 

Traditional scouting often relies overly on a player’s recent performance in the last 3-5 254 

tournaments, however, this model provides a framework for a “Trajectory Score” that 255 

combines a player’s Elo rating over the past 24 months to the total volume of matches they 256 

have played. Thus, a player with a steadily rising Elo from 1500 to 1700 over 100 matches is 257 

a more valuable and reliable asset than a player who jumped from 1500 to 1750 after a single, 258 

potentially lucky tournament against lower ranked opponents. This will allow scouts to 259 

identify players who are genuinely improving their core skills compared to those experiencing 260 

temporary variance. 261 

2. Quantifying the ROI of Competitive Exposure for Academies: The importance of total 262 

matches played (16.2% for Player 1) allows academies to move beyond gut-feeling and 263 

speculation to a data-backed strategy. For example, sending a cohort of 10 promising players 264 

to a lower tier Super 100 event can be justified by calculating the aggregate value added to 265 

their profiles through “experience”. This model argues that the long-term benefit of 266 
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accelerating a player's experience curve often outweighs the short-term cost and lack of 267 

prestige in these events.  268 

 

4.1.2 Data-Driven Strategy for Coaches and Players 269 

The "Volatility Index" for Match Preparation: Coaches can make use of the insights created by 270 

the model by calculating a simple Volatility Index for any upcoming match. The index would be high 271 

when a match combines a high-stakes context (Super 1000, qualification match) with a player who is 272 

susceptible to pressure. For example,  273 

Volatility Index =  (Low Player Experience + High Stakes Context) - (Large Elo Difference)  274 

A high risk match, flagged by a high Volatility Index, can be prepared for by coaches by a special 275 

protocol, for example, extended video analysis focused on the opponent's tactical patterns under 276 

pressure, practice sessions dedicated to simulating high-pressure scenarios (e.g., playing points from 277 

16-16 with consequences), and a game plan that will emphasise simple, high-percentage shots to 278 

neutralize pre-match nerves and stabilize performance 279 

  

A Triage System for Analytical Effort: Instead of spending equal time on all opponents, the feature 280 

importance provides a clear, efficient system for analytical resources: 281 

○ Tier 1 Analysis (The Foundation - 69.3% of signal):  This will be a mandatory part of the 282 

evaluation for all opponents, it could include a deep analysis of the opponent’s Elo history, 283 

learning capacity, and match volumes to understand the accumulated experience, whether 284 

they are veteran players with hundreds of matches or new comers, who could be volatile 285 

underdogs.  286 

○ Tier 2 Analysis (The Context - 15.2% of signal): This could be activated for specific 287 

scenarios, including an assessment focussed on how an opponent typically performs in 288 

qualification matches or early-round matches against unknown opponents, to better 289 

understand psychological factors. 290 



17 

○ Tier 3 Analysis (The Noise - 15.5% of signal): A brief review of recent matches and 291 

performance, to be aware of changes in play style or new tactics being employed, for 292 

example, a new service motion, in place of simply a win/loss result. This would allow 293 

coaches to include tactical focus and not solely depend on transient outcomes. 294 

 

4.1.3 For Sports Betting and Predictive Markets: Building an Analytical 295 

Edge 296 

In professional betting, rather than predicting every match correctly, it’s advantageous when a bettor 297 

can identify where the public model is incorrect, and the research done in this paper can provide a 298 

framework to do exactly that.  299 

- A "Model vs. Market" Screener: A bettor could make use of this model to screen for 300 

discrepancies by calculating the model’s probability for a player to win and comparing it to 301 

the probability offered by a bookmaker and it will create the most significant opportunities 302 

when: 303 

○ The Market Overvalues Recent Form: The public may tend to give shorter odds to 304 

a new favourite because they might have won the previous 3-5 matches, however, the 305 

model will recognise this and provide a better advantage. 306 

○ The Market Undervalues Experience and Context: For an underdog with 400+ 307 

career matches competing in a qualification match, the model might assign 8% 308 

“pressure volatility” to boost their chances, ignored by the market, elongating their 309 

odds.  310 

- Parlay and Fading Strategies: The model's high accuracy (76.5%) makes it reliable for 311 

waging confident parlay legs. Additionally, its ability to identify high volatility matches, 312 

creates “fade” opportunities, allowing bettors to actively bet against the public favourite.  313 
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4.1.4 For Broadcast and Fan Engagement: The New Narrative Toolkit 314 

For media and streaming services, models like the one from this paper, could play a very insightful 315 

role to create deeper, more engaging content to cater to a more data-savvy, modern and aware 316 

audience. 317 

○ Data-Enriched Storytelling: Broadcasters can move beyond pure statistics, for example, “He 318 

has a 5-2 head-to-head record”, instead commentary can include specific details, for instance 319 

“While the younger player comes in with a hot streak and good momentum, our analytics give 320 

the edge to the veteran here whose 500-match career has built a resilience, crucial for these 321 

high-pressure qualification matches.” Through this, audiences would be able to move beyond 322 

simple numbers and understand more complex nuances of matches. This would also help in 323 

deepening their appreciation and understanding and providing them the full story backed with 324 

data. 325 

 

○ Interactive Fan Engagement: Second-screen applications could be used along with on-326 

screen graphics in real time, with the model. Rather than just showing a score, the broadcaster 327 

could display a live “Win Probability" that fluctuates based on the core features of the players 328 

involved, not just the scores. A fan could see: "Win chance dropped 10% due to opponent's 329 

momentum (Recent Win % factor)", educating views about subtle, non-scoreboard factors 330 

that influence the sport. 331 

 

4.2 Theoretical Contributions: Challenging Conventional Wisdom in 332 

Sports Analytics 333 

 

Beyond its practical utility, this study makes two significant theoretical contributions that challenge 334 

established narratives in sports performance analysis. 335 
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4.2.1 Quantifying the "Hot Hand" Fallacy in Racket Sports 336 

The relatively low importance of the recent win percentage (15.5%) cumulatively for both players, 337 

compared to long term skill and experience provides strong evidence for a “hot hand” fallacy. “Hot 338 

hand” fallacy, although it is debated heavily in sports like basketball, the results from this study show 339 

that even in the context of an individual, “form”/ “momentum” is often overvalued and wrongly 340 

attributed as a result of statistical noise or weaker opponents. 341 

 

This doesn’t disregard the psychological impact that momentum and  “hot streaks” may have, but it 342 

shows that it is not as important as a predictive feature, and is statistically shadowed by a player’s raw 343 

skill and experience. This finding urges a re-evaluation of how “form” is weighed both analytically 344 

and intuitively for match predictions. 345 

 

4.2.2 Experience as a Quantifiable Intangible Skill 346 

The strong performance of total career matches as a predictive feature with 28.4% importance, makes 347 

“experience” not just a vague cliché, but a measurable indicator for performance. This metric is also a 348 

proxy for intangible skills which are difficult to capture solely off traditional statistics, but are critical 349 

in evaluating match predictions:  350 

○ Pressure Management: The effect of navigating hundreds of high stakes points and matches, 351 

which creates a distinguishing resilience from raw skills and ability. 352 

○ Strategic Adaptation: Additionally, players with a long term experience have played a wider 353 

variety of play styles as well as game situations, which allows them to make faster and more 354 

effective in-match tactical changes. 355 

○ Tournament Recovery: The physical and mental endurance required to compete repeatedly 356 

across a long career is itself a skill that contributes to consistent performance. 357 

This shows how in elite level badminton, experience isn’t just a subtle detail, but is a distinct and 358 

measurable dimension of athletic ability and capacity that is built from a volume of matches and 359 

competitions and contributes to providing a significant and measurable advantage.   360 
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4.3 Limitations and Avenues for Future Research 361 

The research conducted for this paper, while it does provide a powerful macroscopic view, there are 362 

still certain limitations that could be overcome upon further research. The analysis is based on match 363 

outcomes and does not currently incorporate in-play details like shot type, player placement, 364 

movement. Additionally, the Elo system implements standard parameters; however, future work could 365 

develop a badminton-specific rating system incorporating margin of victory or surface type (indoor 366 

vs. outdoor).  367 

○ Integration of Tracking Data: Future work could integrate player and shot tracking data 368 

from official providers to unlock features related to technical prowess (e.g., smash speed, shot 369 

placement). 370 

○ Optimized Rating Systems: Developing an Elo system specific to badminton related features 371 

and analytics, potentially with a dynamic K factor, or a margin of victory component, could 372 

further help to improve the skill assessment for players. 373 

○ Expansion to Other Disciplines: Applying this framework to women’s singles and doubles 374 

matches, would help to further test the applicability of the model and assess the universality 375 

of performance drivers across the sport 376 

 

5. Conclusion 377 

This study successfully demonstrates that machine learning models, particularly XGBoost, can 378 

effectively predict elite badminton match outcomes with 76.49% accuracy, outperforming traditional 379 

methods like Elo ratings and logistic regression. More importantly, analysing feature importance has 380 

helped to understand the hierarchy of various performance drivers and how long-term skill and career 381 

experience are paramount, while short-term form and match context are secondary factors. 382 

 

The findings challenge conventional wisdom by providing evidence against the predictive value of the 383 

"hot hand" narrative, instead revealing that accumulated experience and consistent skill development 384 

are more reliable indicators. By moving beyond predictions, to uncover the fundamental determinants 385 
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of victory, this research offers a practical framework for coaches, scouts, analysts, and broadcasters to 386 

make more informed decisions. 387 

 

The methodology and insights not only increase the understanding of badminton performance but also 388 

contribute to the broader sports analytics literature by validating established theories in newer 389 

contexts. This work establishes a foundation for more sophisticated analytics and highlights the value 390 

of machine learning for generating strategic insights beyond simple prediction for underrepresented 391 

sports like badminton. 392 
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