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ABSTRACT 6 

The NFL draft is an opportunity for teams to draft new players, address positional needs, and strengthen 7 

their roster for the upcoming season. Teams often trade players or compensation packages to secure certain 8 

prospects, which can be critical for team success. Wide receivers were selected as the focus of this study because the 9 

position is heavily influenced by objective data — such as receiving statistics and combine metrics like speed, 10 

agility, and explosiveness — making it well-suited for predictive modeling using machine learning. This study 11 

presents a two-stage machine learning approach to first predict whether a wide receiver (WR) invited to the NFL 12 

Scouting Combine will be drafted, and if so, at which overall position. Using physical testing data from the NFL 13 

combine, college production statistics, and historical draft result training data from 2000 to 2024, we construct a 14 

Gradient Boosting Classifier to predict draft likelihood followed by a CatBoost Regressor to estimate draft position 15 

for those predicted to be selected. This approach provides NFL teams and scouts with a reliable estimate of whether 16 

and when a combine-invited wide receiver will be drafted, helping them make more informed decisions and 17 

strategically position themselves to select desired prospects. In validation, our classifier reached 89.2% accuracy 18 

(F₁ = 0.936), and our regressor yielded a 49.2-pick MAE (ρ = 0.626), demonstrating robust predictive performance.  19 

Keywords: predictive analytics, NFL draft, wide receivers, sports analytics, machine learning 20 
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 24 

Introduction 25 

 26 

In recent years, the wide receiver has emerged as a crucial position for the success of teams in the National Football 27 

League (NFL). NFL teams strive to have star wide receivers on their roster, which can often transform a team’s 28 

offense into a high-powered, game-changing threat that can stretch the field and exploit defensive mismatches. Wide 29 

receivers not only need to run various routes but also have the ability to jump and catch passes and occasionally 30 

block. While teams can sign wide receivers through free agency, many teams prefer to draft core receivers out of 31 

college. Many of the college football prospects each year, including wide receivers, are invited to the NFL Combine 32 

if they receive an invitation from the Player Selection Committee based on college performance. Although only 33 

select players are invited to the combine, a strong showing can significantly elevate a player's draft stock, while a 34 

weak performance can just as easily cause it to fall. Thus, it’s possible to quantify and predict whether a player gets 35 

drafted or not and if so, at what pick based on their college performance and their performance at the combine if 36 

they got invited.  37 

Past studies have used machine learning (ML) models to forecast binary football-related outcomes. Primarily, Clark 38 

et al. (2013) constructed a logistic regression model using field goal play-by-play data from the 2000-2011 NFL 39 

seasons to identify influential factors for field goal success and found that psychological factors have no statistically 40 

significant effects on the probability of making a field goal whereas environmental factors such as temperature, 41 

precipitation, and wind speed have a far more significant impact. Many predictor variables used in the study such as 42 

weather indicators have a high degree of correlation and field goals themselves are random events affected by 43 

human performance and this randomness is impossible to capture with a model. Additionally, a majority of data 44 

consists of high-success probability scenarios as most field goals are likely attempted if there’s a high chance of 45 

making them. A study by Gifford & Bayrak (2023) used all regular season game data from the 2002-2018 seasons 46 

and constructed a logistic regression model and a decision tree model to identify the most important predictors of 47 

NFL game outcomes. They achieved 83% validation accuracy with logistic regression in predicting NFL game 48 
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outcomes and found that turnovers lost on offense, turnovers forced on defense, total yards on offense, and total 49 

yards allowed on defense were the most significant indicators. However, the study doesn’t account for statistics that 50 

are derived from causation such as aggressive vs. conservative play style and doesn’t account for psychological 51 

factors affecting gameplay such as confidence and shifts in momentum. A similar study by Baker & Kwartler (2015) 52 

constructed two logistic regression models to predict the outcome of a play—whether a pass or run was executed—53 

using play-by-play data from the 2000–2012 seasons for the Cleveland Browns and Pittsburgh Steelers. The model 54 

achieved 66.4% accuracy in predicting Cleveland’s plays and 66.9% accurate for Pittsburgh, representing only a 55 

slight improvement over random guessing. The study did not employ a validation set and all data points were used 56 

to train the model, which slightly flaws its accuracy. Additionally, team-based models might not be the strongest 57 

indicator of play-calling compared to team personnel or coaching staffs, and the study doesn’t account for weather 58 

conditions which can affect play-calling. It is a promising study that can inform the strategies of teams and 59 

anticipate play selection.   60 

Additionally, ML models have also been used for regression tasks in football, not involving binary outcomes and 61 

rather predicting the numerical values of a variable. A study by Taylor (n.d.) utilized both a shallow convolutional 62 

neural network (CNN) and transfer learning with the VGG19 image model to predict the offensive play call and 63 

predict the yardage outcome of a play using play-by-play data along with images of the field before the snap of each 64 

play for plays that only resulted in a yardage outcome (avoiding penalties, punts etc.). Using a cost function of mean 65 

absolute yards, both models with tuned hyperparameters struggle to predict yardage outcomes with an improved 66 

performance versus guessing the median of all training data for all plays, and the image data also contributed no 67 

significant value.  However, both the shallow CNN and VGG19 transfer learning had improved accuracy (both 68 

0.606 accuracy) versus the benchmark (guess all plays are pass) for predicting play call but preformed slightly worse 69 

than a simpler random forest model without image data (0.614 accuracy). A similar study by Teich et al. (2016) also 70 

predicted yardage outcome of a play as well as well as the progress metric which calculates a scaled score between 0 71 

and one based on the current down, achieved yards, and yards to go as a measure of success. For example, achieving 72 

a 1st down receives a score of 1, and achieving yards but not reaching a 1st  down gets a decimal which is smaller on 73 

later downs, and not reaching a 1st  down on a 3rd or 4th down receives a 0. All the machine learning methods used to 74 

predict yards gained in a play resulted in a Mean Average Error (MAE) greater than 5 and an RMSE greater than 8, 75 

which is a high error margin considering that 10 yards is a 1st  down. However, all ML models on the progress 76 
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metric only had a MAE of 0.15 or less and a RMSE of 0.25 or less. While regression tasks in the NFL are inherently 77 

difficult, using a scaled and context-aware metric like progress makes prediction more meaningful and can limit 78 

prediction errors. 79 

Very few papers actually predicted the order of the NFL draft. A study by Mulholland & Jensen (2014) used very 80 

similar predictor variables to this study to predict the draft order of tight ends using a linear regression model and a 81 

decision tree model. For the decision tree, college yards and the 40-yard dash seemed to be the most important 82 

predictor variables while the linear regression chose the 40-yard dash and the bench press as the most important 83 

predictor variables. Although the study achieved an RMSE of 56.52 using decision trees, the model only predicts 84 

draft placement on tight ends who are known to be drafted. Although they briefly explored a logistic regression 85 

model to predict whether a tight end is drafted, that analysis lacks depth and doesn’t mention any coefficients or 86 

model diagnostics. Although they state that 40-yard dash time was the most significant predictor and that four of six 87 

combine measures were selected in the final model, the absence of detailed metrics prevents a thorough evaluation 88 

of the model’s predictive power. Although 40-yard dash is identified as the most significant predictor, the lack of 89 

quantitative details limits the interpretability of the model. A more thorough analysis—such as reporting feature 90 

weights or applying cross-validation—would enhance the practical value of their findings. Finally, Dhar (n.d.) 91 

constructed a linear regression model and a recursive partitioning regression tree (CART) model to predict draft 92 

order for wide receivers. Since the study uses only drafted receivers from 1999-2008 for training and also discards 93 

receivers without college data available online, only 266 training data points were used. Surprisingly, the linear 94 

regression model that combined college and combine variables with a R² of 0.302 had a 40-yard dash coefficient of 95 

227.5, suggesting that a 0.1 second decrease in the 40-yard dash results in a 22.75 slot improvement in predicted 96 

draft placement. The primary split in the CART was total college receiving yards at a threshold of 1627 yards with 97 

players above being “over-achievers” and players below being “under-achievers”. However, running a fast 40-yard 98 

dash could improve projected draft position for “under-achievers” confirming the NFL bias toward 40-yard dash 99 

dash times. The study never uses any testing data, and all reported metrics came from the training data. Thus, no 100 

prior research has addressed predicting whether a wide receiver invited to the combine will be drafted, or estimating 101 

their draft position with proper evaluation on unseen data. 102 

Methods 103 

 104 
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Data 105 

Using the nfl_data_py Python library, we compiled NFL Combine data for all wide receivers who attended between 106 

2000 and 2024. Data for the 2021 season was not included in the study, as it came from college pro days and not 107 

from the invitation-only NFL combine. In addition to combine metrics, the dataset included each player’s height, 108 

weight, college, draft year, and draft pick (if applicable). The draft year and draft pick fields were NaN for undrafted 109 

players. College football receiving statistics were compiled from the 1999 to 2023 through the Sports Reference 110 

website. The chosen fields were total receptions, total yards, touchdowns and yards per game. This left us with 1152 111 

data points out of which 170 (14.6%) data points did not have any recorded college stats on the Sports Reference 112 

website. 113 

 114 

Variable Description 
calculated_forty Draft class–ranked 40-yard dash time (lower raw time ranked higher) 
calculated_bench Draft class–ranked bench press repetitions (higher repetitions ranked higher) 
calculated_vertical Draft class–ranked vertical jump (higher jump ranked higher) 
calculated_broad_jump Draft class–ranked broad jump (higher jump ranked higher) 
calculated_cone Draft class–ranked 3-cone drill time (lower time ranked higher) 
calculated_shuttle Draft class–ranked shuttle run time (lower time ranked higher) 
REC Number of receptions in final college season 
YDS Total receiving yards in final college season 
Y_R Yards per reception in final college season 
TD Receiving touchdowns in final college season 
Y_G Receiving yards per game in final college season 
ht_inches Player height in inches 
wt Player weight in pounds 
conf_ACC Indicator variable for Atlantic Coast Conference 
conf_Big 12 Indicator variable for Big 12 Conference 
conf_Big Ten Indicator variable for Big Ten Conference 
conf_Other Indicator variable for non–Power Five conferences or independent programs 
conf_Pac-12 Indicator variable for Pac-12 Conference 
conf_SEC Indicator variable for Southeastern Conference 

 115 

Table 1. Feature names and descriptions 116 

Data Preparation 117 

Before the creation of our models, the data was cleaned to remove all NaN values and dummy variables were 118 

created. The dataset included a draft_ovr field, which specified the overall draft position for each player if they were 119 

drafted and was otherwise missing (NaN). We created a binary classification target variable, is_drafted, by assigning 120 

a value of 1 to players with a non-missing draft_ovr and 0 to those with a missing value. We used the 121 

IterativeImputer from the scikit-learn library, which fits a Bayesian Ridge regression model to estimate and 122 
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iteratively fill in missing values. Each variable with missing data is modeled as a function of the other variables, and 123 

the imputation process is repeated for several iterations to improve accuracy. We created one imputer for power and 124 

explosiveness metrics (e.g., height, weight, bench press) and a separate one for speed/agility metrics (e.g., 40-yard 125 

dash, 3-cone drill, shuttle run). While the 40-yard dash has high feature importance, only 63 (5.47%) players were 126 

missing it and they were all from early years. The rest of the features we imputed had minimal feature importance 127 

compared to the 40-yard dash.  Since college reception stats had a high feature importance and there’s no logical 128 

way to impute it, we decided to remove all records without college stats leaving us with 982 records being used in 129 

the study. Additionally, for players that played multiple years in college before attending the combine, only their 130 

most recent year of college before attending the combine was kept in the study to ensure consistency. For all metrics 131 

except height and weight, we applied feature ranking to standardize values and ensure consistency across different 132 

draft years. This approach accounts for evolving athletic standards over time and reduces model variance as different 133 

features have different scales. For example, a player who recorded the fastest 40-yard dash in his draft class received 134 

a score of 1 in the calculated_forty feature. This ranked value was used in place of the raw time to reflect the fact 135 

that wide receivers have become increasingly athletic over the years, and prospects are ultimately evaluated relative 136 

to others in their draft class—not across eras. The logic accounted for the fact that a greater value in some features is 137 

beneficial while a smaller numerical value in other features is better. If two prospects tie, then they both receive that 138 

ranking. Height and weight were not ranked due to there not being a census on the optimal ranges. Additionally, 139 

height and weight are subjective and highly dependent on play style and scheme fit, so we thus avoided misleading 140 

assumptions into the model. College reception stats were also not ranked because we removed many prospects who 141 

attended the combine but did not have college receiving statistics available on Sports Reference, as doing so would 142 

result in inflated rankings for those with data available that ignore prospects without data available and introduce 143 

bias into the model. We created the dummy variables conf_ACC, conf_Big 12, conf_Big Ten, conf_Pac-12, 144 

conf_SEC, and conf_Other which are a 0 if a player does not attend a school in that conference and a 1 if they attend 145 

a school in that conference.  Table 1 lists all feature names and their labels that were used in the study. Table 2 lists 146 

the statistics for all the features used in this study. 147 

 148 

Variable Role Mean Standard 
Dev. 

Non-missing Missing Min
. 

Median Max. Skewness Kurtosis 

calculated_forty INPUT 23.32 14.09 982 0 1 22 63 0.23 -0.89 
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calculated_bench INPUT 23.46 13.91 982 0 1 23 63 0.22 -0.86 

calculated_vertical INPUT 23.37 14.01 982 0 1 23 63 0.22 -0.88 

calculated_broad_jump INPUT 23.32 13.91 982 0 1 23 62 0.24 -0.86 

calculated_cone INPUT 23.49 13.94 982 0 1 23 62 0.26 -0.85 

calculated_shuttle INPUT 23.51 13.85 982 0 1 23 63 0.22 -0.84 

REC INPUT 56.9 25.06 982 0 1 55 158 0.42 0.12 

YDS INPUT 826.4 360.4 982 0 3 799.5 2060 0.27 -0.15 

Y_R INPUT 14.73 3.15 982 0 3 14.35 29.6 0.7 1.88 

TD INPUT 6.73 4.16 982 0 0 6 25 0.74 0.62 

Y_G INPUT 70.17 27.57 982 0 0.3 68.2 187.3 0.23 0.05 

ht_inches INPUT 72.67 2.25 982 0 65 73 78 -0.23 -0.23 

wt INPUT 200.99 15.04 982 0 149 201 247 -0.12 -0.07 

conf_ACC INPUT 0.1 0.31 982 0 0 0 1 2.58 4.65 

conf_Big 12 INPUT 0.1 0.3 982 0 0 0 1 2.63 4.93 

conf_Big Ten INPUT 0.13 0.33 982 0 0 0 1 2.26 3.13 

conf_Other INPUT 0.36 0.48 982 0 0 0 1 0.59 -1.65 

conf_Pac-12 INPUT 0.12 0.33 982 0 0 0 1 2.28 3.19 

conf_SEC INPUT 0.19 0.39 982 0 0 0 1 1.62 0.62 

 149 

Table 2. Feature statistics 150 

Model Creation 151 

In order to predict draft likelihood and draft position for those predicted to be drafted, we built two models, a 152 

classification model and a regression model. For both models, we initially used LazyPredict to test multiple models 153 

for their baseline performance, and those with the best results were chosen. We then performed hyperparameter 154 

tuning with a grid search through the GridSearchCV class within scikit-learn. The final classifier selected was a 155 

Gradient Boosted Decision Trees (GBDT) model, which significantly outperformed baseline models such as logistic 156 

regression and Support Vector Machines (SVM). A GBDT classifier combines multiple decision trees into a single 157 

model, where each tree is trained to be maximally correlated with the negative gradient of the loss function, 158 

associated with the entire ensemble (Natekin & Knoll, 2013). The tree recursively partitions data to determine which 159 

traits a player should have in order to have the best chance to be drafted. Trees are added sequentially, with each one 160 

trained to correct the errors made by the ensemble learned so far. We use the default cross-entropy loss, which 161 

optimizes probabilistic classification and is also used in logistic regression. To determine the success of the 162 

classification model, we looked at validation accuracy with classifying players as drafter or not. We also evaluated 163 
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the F1 score which helps us understand how well the model balances precision (how many predicted drafted players 164 

were correct) and recall (how many players were captured as drafted) (Vakili et al., 2020). This penalizes the model 165 

if it is biased towards drafted players and fails to perform on the minority undrafted players in the data. The equation 166 

is shown below where TP = true positives, FP = false positives, and FN = false negatives.  167 

 168 

F1 Score  =  2  ⋅  
�  TP

TP +  FP  �   ⋅   � 
TP

TP +  FN  �

�  TP
TP +  FP  �   +   �  TP

TP +  FN  �
 169 

 170 

For our regression model, we used a CatBoost regressor to predict the draft order for prospects predicted to be 171 

drafted. CatBoost outperforms other boosting implementations such as XGBoost and LightGBM due to its use of 172 

ordered boosting, which prevents target leakage and prediction shift during training by ensuring that each model 173 

update is based only on past data in a permutation of the training set. In addition, CatBoost handles categorical 174 

variables natively through ordered target statistics, which convert categorical features into numeric values using 175 

historical data, thereby avoiding leakage while supporting high-cardinality features. For each tree split, CatBoost 176 

also constructs combinations of categorical features already used in previous splits, allowing the model to capture 177 

higher-order interactions between variables (Prokhorenkova et al., 2019). We optimized the CatBoost model using 178 

the Mean Absolute Error (MAE) loss function, which represents the average number of draft picks the model is off 179 

by from the actual draft outcome. 180 

 181 

MAE =
1
𝑛𝑛
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |
𝑛𝑛

𝑖𝑖=1

 182 

 183 

We also used R² to assess the model and it explains the proportion of variance in draft position explained by the 184 

model. An R² of 0 would indicate that our model is no better than predicting the mean draft pick for all players, 185 

while an R² of 1 indicates perfect predictions. Since we use a nonlinear regressor (GBDT), R² still reflects the 186 

proportion of variance explained, while MAE provides additional context on prediction error. Finally, we decided to 187 

also use Spearman's rank correlation coefficient as it provided the correlation coefficient between the rankings of 188 

draftable players versus their order of being drafted, and thus, is not as affected by the uneven distribution of picks 189 
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each round. The Spearman coefficient ranges from -1 to 1 and is used to measure any monotonic relationship 190 

between variables that do not follow an approximately normal distribution (Rovetta, 2020). For example, in 2020, 191 

while our model predicted Justin Jefferson to be drafted at 21.77 (retain decimals to evaluate model), he ended up 192 

being drafted at 22. This would make the MAE 0.23 while Justin Jefferson would contribute 0.000724 to the 193 

spearman coefficient as he was predicted to be the first WR drafted by the model but ended up being the 5th WR 194 

taken in the 2020 draft while 51 total WRs attended the combine according to this formula:  195 

 196 

ρ = 1 −
6∑𝑑𝑑𝑖𝑖2

𝑛𝑛(𝑛𝑛2 − 1) 197 

 198 

Model Training and Evaluation 199 

We used Leave-One-Season-Out Cross-Validation (LOSOCV), in which each season (2020, 2022, 2023, and 2024) 200 

was held out once as a test set while the remaining seasons excluding 2021 were used for training. In each fold, both 201 

the classifier and regressor were retrained using the same hyperparameters. Results were reported separately for 202 

each season to assess year-by-year performance. This cross-validation strategy was chosen to account for changes in 203 

prospects and drafting styles over time. It provided more consistent performance estimates compared to standard 204 

train-test splits or splitting by seasons. The classifier was trained on all players in the training data. We plotted 205 

validation accuracy against the number of estimators for the classifier to identify the optimal number of boosting 206 

stages. However, to ensure proper evaluation of the regression model, the regressor was trained only on players who 207 

were actually drafted in the training set. This avoided penalizing the regressor for classifier errors and ensured that 208 

evaluation metrics such as Mean Absolute Error (MAE) and R² reflected only cases where a draft position existed. 209 

Figure 1 shows how the model operates on unseen data. First, raw wide receiver data is cleaned and transformed 210 

through feature engineering, then passed into a binary classifier to predict draft status. If the player is classified as 211 

drafted, the data is further processed by a regression model to estimate their draft position. 212 

Figure 1. Model Flowchart 213 
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 214 

 215 

Results 216 

 217 

The results of the study are summarized in Table 3. For both the classifier and the regressor, 2024 was the best year 218 

of performance for both models while 2023 was the worst year for the classifier, and 2020 was the worst year for the 219 

regressor based on the MAE, R², and Spearman coefficient. According to PFF, the 2023 draft class did not feature a 220 

standout receiver and none of the top three prospects were nearly as developed as those from previous years 221 

(Monson, 2023).  Notably, Jaxon Smith-Njigba, widely regarded as the second-best receiver in the class, was 222 

predicted to go undrafted by our classifier. This likely occurred because he did not run the 40-yard dash at the NFL 223 

Combine—his unofficial Pro Day time was not included in the dataset—and because he missed most of the 2022 224 

season with a hamstring injury, recording only 5 receptions for 43 yards. As our model uses only final-season 225 

statistics for consistency, this limited his feature data considerably. Additionally, the imputed 40-yard dash was 226 

beneficial and prevented dumping lots of early-season data but was not perfect even though it was based on other 227 

speed/agility metrics. No solid evidence was found for the weak regressor performance in 2020. However, the strong 228 

performance for both models in 2024 is likely due to the 2024 draft class being one of the strongest in the last 229 

decade, but predicting draft position has more confounding variables compared to predicting whether a player is 230 

drafted or not (Sikkema, 2024). While the regressor occasionally misranks individual players compared to other 231 

mock drafts, it consistently succeeds in distinguishing between early- and late-round prospects. For instance, the 232 

model’s top predicted wide receiver prospects in order were Brian Thomas, Xavier Legette, Malik Nabers, Rome 233 

Odunze, Troy Franklin, and Marvin Harrison Jr. Another interesting player was George Pickens, who tore his ACL 234 

in 2021 and missed most of his junior season, and finished with only 5 receptions for 107 yards after returning for 235 

the latter part of the season. He was predicted to be drafted at 115.76 by our model and was ranked as the 21st best 236 

receiver by our model, but he ended up being picked at 52 by the Pittsburgh Steelers as the 11th WR taken in his 237 

class. This discrepancy highlights several limitations in using purely performance and combine data for draft 238 

prediction. For Pickens, both behavior concerns and his ACL tear contributed to a wide range of team evaluations. 239 

According to Bachar (n.d.), at least one NFL team removed Pickens from their draft board due to concerns about his 240 
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behavior during a pre-draft visit. Despite these concerns, the Steelers were willing to draft him and overlook his 241 

injury history and other pre-draft concerns, valuing his high upside as a prospect. While the model penalized him for 242 

lack of recent production, it couldn’t account for team-specific evaluations of his character, which can vary from 243 

team to team. 244 

 245 

 246 

Year Classifier 

Accuracy 

Classifier F1 

Score 

MAE on 

Drafted 

R² on 

Drafted 

Spearman 

ρ 

2020 0.8431 0.8824 66.80 -0.0037 0.3006 

2022 0.8056 0.8727 52.26 0.1635 0.4200 

2023 0.6042 0.6667 55.15 0.1303 0.3562 

2024 0.8919 0.9355 49.18 0.3233 0.6262 

Avg 0.7862 0.8393 55.85 0.1533 0.4257 

 247 

Table 3. Model results 248 

 249 

 250 

Discussion and conclusion 251 
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Figure 2. Feature Importance 252 

 253 

Our two-stage modeling approach showed that predicting whether a WR gets drafted or not with a high level of 254 

accuracy is possible and predicting the exact draft slot is also possible, but much harder to do and is easily affected 255 

by outlying variables. The classifier achieved high accuracy across seasons, especially in 2024, indicating strong 256 

ability to identify whether a WR would be drafted. The regressor being able to predict the predict the overall draft 257 

position of a player within 49.18 picks indicate that for prospects with no anomalies in college or in the combine, 258 

predicting their draft round within 2 rounds is possible. Further tuning of the data, such as removing players who 259 

were injured in their final season, and more data for more recent years with less missing data could lead both models 260 

to become significantly more accurate and can offer an can offer an unbiased, statistical ranking of WRs, free from 261 

media or player hype. According to Figure 2, the 40-yard dash was the most important predictor for both models, 262 

followed by college touchdowns. Both models’ reliance on college statistics and combine measures and not being 263 

able to quantify features like injury history, pre-draft interviews, and play style/team fit make the model weaker and 264 

show the problems associated with a purely-data approach. Regression is also a much harder task as it is impacted 265 

by team needs, position depth, and off-field behavior, which is unquantifiable. For this reason, the Spearman 266 

coefficient tells a different story: while the predicted draft positions may not always be numerically close, the 267 

overall ranking of receivers produced by our regressor was similar to the true draft order. Our average Spearman 268 

coefficient of 0.4257 suggests a moderate correlation between the actual draft order of WRs and the order predicted 269 

by our model. Unlike MAE which penalizes large errors and punishes predictions off by a few rounds, the Spearman 270 

shows relative rankings of receivers and is useful when picks aren’t as important. Teams in need of a receiver want 271 

baseline rankings for prospects, and can further do research on prospects based on the non-biased rankings of the 272 

model. They can also use the regressor’s predicted draft slot for a player to gauge where they end up being drafted, 273 

and can use this to trade up in order to secure the player. Prospects looking to boost their stock can also refer to the 274 

feature importance rankings to identify which areas of performance matter most and where to focus their 275 

improvement. Ideally, reducing the MAE to within one round (MAE ≤ 32), or even lower, would make the 276 

predictions more practical. For example, misclassifying a WR3 as the WR6 might yield an MAE of 50 or 60, but the 277 

relative ranking of the prospect is still informative—especially considering that 50+ wide receivers typically attend 278 

the combine. This level of approximation can still provide meaningful value to NFL front offices during draft 279 
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evaluations. Potential areas of improvement for the model include using Natural Language Processing (NLP) to gain 280 

sentiment analysis on prospects, although this would only really be effective for the top prospects and could 281 

overshadow those from smaller schools. Using multiple years of college reception data for players who have it can 282 

also be useful, especially for players that ended up being injured or had minimal production in their final season of 283 

college football. Additionally, grading each NFL team on their need for wide receivers in a given draft class based 284 

on roster depth could improve the regressor’s ability to predict actual pick order by accounting for team-specific 285 

drafting behavior. This approach can be applied to other positions in the NFL but may be more difficult due to the 286 

lesser importance given to the combine and greater emphasis on intangibles for positions other than WR. It can also 287 

be applied for predicting draft outcomes in other sports. Still, this methodology holds promise for broader draft 288 

analysis in football and other sports. 289 

 290 
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