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Boosting Draft Accuracy: A Two-Stage Classifier—Regressor
Approach for NFL Wide Receiver Prospect Evaluation

Aadi Patangi

Amador Valley High School

ABSTRACT

The NFL draft is an opportunity for teams to draft new players, address positional needs, and strengthen

their roster for the upcoming season. Teams often trade players or compensation packages to secure certain
prospects, which can be critical for team success. Wide receivers were selected as the focus of this study because the
position is heavily influenced by objective data — such as receiving statistics and combine metrics like speed,
agility, and explosiveness — making it well-suited for predictive modeling using machine learning. This study
presents a two-stage machine learning approach to first predict whether a wide receiver (WR) invited to the NFL
Scouting Combine will be drafted, and if so, at which overall position. Using physical testing data from the NFL
combine, college production statistics, and historical draft result training data from 2000 to 2024, we construct a
Gradient Boosting Classifier to predict draft likelihood followed by a CatBoost Regressor to estimate draft position
for those predicted to be selected. This approach provides NFL teams and scouts with a reliable estimate of whether
and when a combine-invited wide receiver will be drafted, helping them make more informed decisions and
strategically position themselves to select desired prospects. In validation, our classifier reached 89.2% accuracy
(F1=0.936), and our regressor yielded a 49.2-pick MAE (p = 0.626), demonstrating robust predictive performance.

Keywords: predictive analytics, NFL draft, wide receivers, sports analytics, machine learning
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Introduction

In recent years, the wide receiver has emerged as a crucial position for the success of teams in the National Football
League (NFL). NFL teams strive to have star wide receivers on their roster, which can often transform a team’s
offense into a high-powered, game-changing threat that can stretch the field and exploit defensive mismatches. Wide
receivers not only need to run various routes but also have the ability to jump and catch passes and occasionally
block. While teams can sign wide receivers through free agency, many teams prefer to draft core receivers out of
college. Many of the college football prospects each year, including wide receivers, are invited to the NFL Combine
if they receive an invitation from the Player Selection Committee based on college performance. Although only
select players are invited to the combine, a strong showing can significantly elevate a player's draft stock, while a
weak performance can just as easily cause it to fall. Thus, it’s possible to quantify and predict whether a player gets
drafted or not and if so, at what pick based on their college performance and their performance at the combine if
they got invited.

Past studies have used machine learning (ML) models to forecast binary football-related outcomes. Primarily, Clark
et al. (2013) constructed a logistic regression model using field goal play-by-play data from the 2000-2011 NFL
seasons to identify influential factors for field goal success and found that psychological factors have no statistically
significant effects on the probability of making a field goal whereas environmental factors such as temperature,
precipitation, and wind speed have a far more significant impact. Many predictor variables used in the study such as
weather indicators have a high degree of correlation and field goals themselves are random events affected by
human performance and this randomness is impossible to capture with a model. Additionally, a majority of data
consists of high-success probability scenarios as most field goals are likely attempted if there’s a high chance of
making them. A study by Gifford & Bayrak (2023) used all regular season game data from the 2002-2018 seasons
and constructed a logistic regression model and a decision tree model to identify the most important predictors of

NFL game outcomes. They achieved 83% validation accuracy with logistic regression in predicting NFL game
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outcomes and found that turnovers lost on offense, turnovers forced on defense, total yards on offense, and total
yards allowed on defense were the most significant indicators. However, the study doesn’t account for statistics that
are derived from causation such as aggressive vs. conservative play style and doesn’t account for psychological
factors affecting gameplay such as confidence and shifts in momentum. A similar study by Baker & Kwartler (2015)
constructed two logistic regression models to predict the outcome of a play—whether a pass or run was executed—
using play-by-play data from the 2000-2012 seasons for the Cleveland Browns and Pittsburgh Steelers. The model
achieved 66.4% accuracy in predicting Cleveland’s plays and 66.9% accurate for Pittsburgh, representing only a
slight improvement over random guessing. The study did not employ a validation set and all data points were used
to train the model, which slightly flaws its accuracy. Additionally, team-based models might not be the strongest
indicator of play-calling compared to team personnel or coaching staffs, and the study doesn’t account for weather
conditions which can affect play-calling. It is a promising study that can inform the strategies of teams and
anticipate play selection.

Additionally, ML models have also been used for regression tasks in football, not involving binary outcomes and
rather predicting the numerical values of a variable. A study by Taylor (n.d.) utilized both a shallow convolutional
neural network (CNN) and transfer learning with the VGG19 image model to predict the offensive play call and
predict the yardage outcome of a play using play-by-play data along with images of the field before the snap of each
play for plays that only resulted in a yardage outcome (avoiding penalties, punts etc.). Using a cost function of mean
absolute yards, both models with tuned hyperparameters struggle to predict yardage outcomes with an improved
performance versus guessing the median of all training data for all plays, and the image data also contributed no
significant value. However, both the shallow CNN and VGG19 transfer learning had improved accuracy (both
0.606 accuracy) versus the benchmark (guess all plays are pass) for predicting play call but preformed slightly worse
than a simpler random forest model without image data (0.614 accuracy). A similar study by Teich et al. (2016) also
predicted yardage outcome of a play as well as well as the progress metric which calculates a scaled score between 0
and one based on the current down, achieved yards, and yards to go as a measure of success. For example, achieving
a 1st down receives a score of 1, and achieving yards but not reaching a 1** down gets a decimal which is smaller on
later downs, and not reaching a 1% down on a 3™ or 4™ down receives a 0. All the machine learning methods used to
predict yards gained in a play resulted in a Mean Average Error (MAE) greater than 5 and an RMSE greater than 8,

which is a high error margin considering that 10 yards is a 1 down. However, all ML models on the progress
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metric only had a MAE of 0.15 or less and a RMSE of 0.25 or less. While regression tasks in the NFL are inherently
difficult, using a scaled and context-aware metric like progress makes prediction more meaningful and can limit
prediction errors.

Very few papers actually predicted the order of the NFL draft. A study by Mulholland & Jensen (2014) used very
similar predictor variables to this study to predict the draft order of tight ends using a linear regression model and a
decision tree model. For the decision tree, college yards and the 40-yard dash seemed to be the most important
predictor variables while the linear regression chose the 40-yard dash and the bench press as the most important
predictor variables. Although the study achieved an RMSE of 56.52 using decision trees, the model only predicts
draft placement on tight ends who are known to be drafted. Although they briefly explored a logistic regression
model to predict whether a tight end is drafted, that analysis lacks depth and doesn’t mention any coefficients or
model diagnostics. Although they state that 40-yard dash time was the most significant predictor and that four of six
combine measures were selected in the final model, the absence of detailed metrics prevents a thorough evaluation
of the model’s predictive power. Although 40-yard dash is identified as the most significant predictor, the lack of
quantitative details limits the interpretability of the model. A more thorough analysis—such as reporting feature
weights or applying cross-validation—would enhance the practical value of their findings. Finally, Dhar (n.d.)
constructed a linear regression model and a recursive partitioning regression tree (CART) model to predict draft
order for wide receivers. Since the study uses only drafted receivers from 1999-2008 for training and also discards
receivers without college data available online, only 266 training data points were used. Surprisingly, the linear
regression model that combined college and combine variables with a R? of 0.302 had a 40-yard dash coefficient of
227.5, suggesting that a 0.1 second decrease in the 40-yard dash results in a 22.75 slot improvement in predicted
draft placement. The primary split in the CART was total college receiving yards at a threshold of 1627 yards with
players above being “over-achievers” and players below being “under-achievers”. However, running a fast 40-yard
dash could improve projected draft position for “under-achievers” confirming the NFL bias toward 40-yard dash
dash times. The study never uses any testing data, and all reported metrics came from the training data. Thus, no
prior research has addressed predicting whether a wide receiver invited to the combine will be drafted, or estimating

their draft position with proper evaluation on unseen data.

Methods
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Data

Using the nfl data py Python library, we compiled NFL Combine data for all wide receivers who attended between

2000 and 2024. Data for the 2021 season was not included in the study, as it came from college pro days and not

from the invitation-only NFL combine. In addition to combine metrics, the dataset included each player’s height,

weight, college, draft year, and draft pick (if applicable). The draft year and draft pick fields were NaN for undrafted

players. College football receiving statistics were compiled from the 1999 to 2023 through the Sports Reference

website. The chosen fields were total receptions, total yards, touchdowns and yards per game. This left us with 1152

data points out of which 170 (14.6%) data points did not have any recorded college stats on the Sports Reference

website.

Variable
calculated_forty
calculated_bench
calculated_vertical
calculated_broad_jump
calculated_cone
calculated_shuttle
REC
YDS
Y_R
D
Y G
ht_inches
wt
conf_ACC
conf_Big 12
conf_Big Ten
conf_Other
conf_Pac-12
conf_SEC

Description
Draft class-ranked 40-yard dash time (lower raw time ranked higher)
Draft class-ranked bench press repetitions (higher repetitions ranked higher)
Draft class—ranked vertical jump (higher jump ranked higher)
Draft class-ranked broad jump (higher jump ranked higher)
Draft class-ranked 3-cone drill time (lower time ranked higher)
Draft class-ranked shuttle run time (lower time ranked higher)
Number of receptions in final college season
Totalreceiving yards in final college season
Yards per reception in final college season
Receiving touchdowns in final college season
Receiving yards per game in final college season
Player heightininches
Player weightin pounds
Indicator variable for Atlantic Coast Conference
Indicator variable for Big 12 Conference
Indicator variable for Big Ten Conference
Indicator variable for non-Power Five conferences or independent programs
Indicator variable for Pac-12 Conference
Indicator variable for Southeastern Conference

Table 1. Feature names and descriptions

Data Preparation

Before the creation of our models, the data was cleaned to remove all NaN values and dummy variables were

created. The dataset included a draft ovr field, which specified the overall draft position for each player if they were

drafted and was otherwise missing (NaN). We created a binary classification target variable, is_drafted, by assigning

a value of 1 to players with a non-missing draft ovr and O to those with a missing value. We used the

IterativeImputer from the scikit-learn library, which fits a Bayesian Ridge regression model to estimate and
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iteratively fill in missing values. Each variable with missing data is modeled as a function of the other variables, and
the imputation process is repeated for several iterations to improve accuracy. We created one imputer for power and
explosiveness metrics (e.g., height, weight, bench press) and a separate one for speed/agility metrics (e.g., 40-yard
dash, 3-cone drill, shuttle run). While the 40-yard dash has high feature importance, only 63 (5.47%) players were
missing it and they were all from early years. The rest of the features we imputed had minimal feature importance
compared to the 40-yard dash. Since college reception stats had a high feature importance and there’s no logical
way to impute it, we decided to remove all records without college stats leaving us with 982 records being used in
the study. Additionally, for players that played multiple years in college before attending the combine, only their
most recent year of college before attending the combine was kept in the study to ensure consistency. For all metrics
except height and weight, we applied feature ranking to standardize values and ensure consistency across different
draft years. This approach accounts for evolving athletic standards over time and reduces model variance as different
features have different scales. For example, a player who recorded the fastest 40-yard dash in his draft class received
a score of 1 in the calculated forty feature. This ranked value was used in place of the raw time to reflect the fact
that wide receivers have become increasingly athletic over the years, and prospects are ultimately evaluated relative
to others in their draft class—not across eras. The logic accounted for the fact that a greater value in some features is
beneficial while a smaller numerical value in other features is better. If two prospects tie, then they both receive that
ranking. Height and weight were not ranked due to there not being a census on the optimal ranges. Additionally,
height and weight are subjective and highly dependent on play style and scheme fit, so we thus avoided misleading
assumptions into the model. College reception stats were also not ranked because we removed many prospects who
attended the combine but did not have college receiving statistics available on Sports Reference, as doing so would
result in inflated rankings for those with data available that ignore prospects without data available and introduce
bias into the model. We created the dummy variables conf ACC, conf Big 12, conf Big Ten, conf Pac-12,

conf SEC, and conf Other which are a 0 if a player does not attend a school in that conference and a 1 if they attend
a school in that conference. Table 1 lists all feature names and their labels that were used in the study. Table 2 lists

the statistics for all the features used in this study.

Variable Role Mean Standard Non-missing Missing Min Median Max. Skewness Kurtosis
Dev. .
calculated_forty INPUT 23.32 14.09 982 0 1 22 63 0.23 -0.89
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calculated_bench INPUT 23.46 13.91 982 0 1 23 63 0.22

calculated_vertical INPUT 23.37 14.01 982 0 1 23 63 0.22
calculated_broad_jump INPUT 23.32 13.91 982 0 1 23 62 0.24
calculated_cone INPUT 23.49 13.94 982 0 1 23 62 0.26
calculated_shuttle INPUT 23.51 13.85 982 0 1 23 63 0.22
REC INPUT 56.9 25.06 982 0 1 55 158 0.42
YDS INPUT 826.4 360.4 982 0 3 799.5 2060 0.27
Y_R INPUT 14.73 3.15 982 0 3 14.35 29.6 0.7
™ INPUT 6.73 4.16 982 0 0 6 25 0.74
Y. G INPUT 70.17 27.57 982 0 0.3 68.2  187.3 0.23
ht_inches INPUT 72.67 2.25 982 0 65 73 78 -0.23
wt INPUT 200.99 15.04 982 0 149 201 247 -0.12
conf_ACC INPUT 0.1 0.31 982 0 0 0 1 2.58
conf_Big12 INPUT 0.1 0.3 982 0 0 0 1 2.63
conf_BigTen INPUT 0.13 0.33 982 0 0 0 1 2.26
conf_Other INPUT 0.36 0.48 982 0 0 0 1 0.59
conf_Pac-12 INPUT 0.12 0.33 982 0 0 0 1 2.28
conf_SEC INPUT 0.19 0.39 982 0 0 0 1 1.62

Table 2. Feature statistics

Model Creation

In order to predict draft likelihood and draft position for those predicted to be drafted, we built two models, a
classification model and a regression model. For both models, we initially used LazyPredict to test multiple models
for their baseline performance, and those with the best results were chosen. We then performed hyperparameter
tuning with a grid search through the GridSearchCV class within scikit-learn. The final classifier selected was a
Gradient Boosted Decision Trees (GBDT) model, which significantly outperformed baseline models such as logistic
regression and Support Vector Machines (SVM). A GBDT classifier combines multiple decision trees into a single
model, where each tree is trained to be maximally correlated with the negative gradient of the loss function,
associated with the entire ensemble (Natekin & Knoll, 2013). The tree recursively partitions data to determine which
traits a player should have in order to have the best chance to be drafted. Trees are added sequentially, with each one
trained to correct the errors made by the ensemble learned so far. We use the default cross-entropy loss, which
optimizes probabilistic classification and is also used in logistic regression. To determine the success of the

classification model, we looked at validation accuracy with classifying players as drafter or not. We also evaluated
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the F1 score which helps us understand how well the model balances precision (how many predicted drafted players
were correct) and recall (how many players were captured as drafted) (Vakili et al., 2020). This penalizes the model
if it is biased towards drafted players and fails to perform on the minority undrafted players in the data. The equation

is shown below where TP = true positives, FP = false positives, and FN = false negatives.

(TPT+PFP) ' (TPT+PFN)

F1 Score = 2 -
(TPT—EFP)WTPE—PFN)

For our regression model, we used a CatBoost regressor to predict the draft order for prospects predicted to be
drafted. CatBoost outperforms other boosting implementations such as XGBoost and LightGBM due to its use of
ordered boosting, which prevents target leakage and prediction shift during training by ensuring that each model
update is based only on past data in a permutation of the training set. In addition, CatBoost handles categorical
variables natively through ordered target statistics, which convert categorical features into numeric values using
historical data, thereby avoiding leakage while supporting high-cardinality features. For each tree split, CatBoost
also constructs combinations of categorical features already used in previous splits, allowing the model to capture
higher-order interactions between variables (Prokhorenkova et al., 2019). We optimized the CatBoost model using
the Mean Absolute Error (MAE) loss function, which represents the average number of draft picks the model is off

by from the actual draft outcome.
n
1 o
MAE = 1y =5
=1

We also used R? to assess the model and it explains the proportion of variance in draft position explained by the
model. An R? of 0 would indicate that our model is no better than predicting the mean draft pick for all players,
while an R? of | indicates perfect predictions. Since we use a nonlinear regressor (GBDT), R? still reflects the
proportion of variance explained, while MAE provides additional context on prediction error. Finally, we decided to
also use Spearman's rank correlation coefficient as it provided the correlation coefficient between the rankings of

draftable players versus their order of being drafted, and thus, is not as affected by the uneven distribution of picks
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each round. The Spearman coefficient ranges from -1 to 1 and is used to measure any monotonic relationship
between variables that do not follow an approximately normal distribution (Rovetta, 2020). For example, in 2020,
while our model predicted Justin Jefferson to be drafted at 21.77 (retain decimals to evaluate model), he ended up
being drafted at 22. This would make the MAE 0.23 while Justin Jefferson would contribute 0.000724 to the
spearman coefficient as he was predicted to be the first WR drafted by the model but ended up being the 5" WR

taken in the 2020 draft while 51 total WRs attended the combine according to this formula:

63 d?

p=1—n(n2_1)

Model Training and Evaluation

We used Leave-One-Season-Out Cross-Validation (LOSOCYV), in which each season (2020, 2022, 2023, and 2024)
was held out once as a test set while the remaining seasons excluding 2021 were used for training. In each fold, both
the classifier and regressor were retrained using the same hyperparameters. Results were reported separately for
each season to assess year-by-year performance. This cross-validation strategy was chosen to account for changes in
prospects and drafting styles over time. It provided more consistent performance estimates compared to standard
train-test splits or splitting by seasons. The classifier was trained on all players in the training data. We plotted
validation accuracy against the number of estimators for the classifier to identify the optimal number of boosting
stages. However, to ensure proper evaluation of the regression model, the regressor was trained only on players who
were actually drafted in the training set. This avoided penalizing the regressor for classifier errors and ensured that
evaluation metrics such as Mean Absolute Error (MAE) and R? reflected only cases where a draft position existed.
Figure 1 shows how the model operates on unseen data. First, raw wide receiver data is cleaned and transformed
through feature engineering, then passed into a binary classifier to predict draft status. If the player is classified as

drafted, the data is further processed by a regression model to estimate their draft position.

Figure 1. Model Flowchart
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Results

The results of the study are summarized in Table 3. For both the classifier and the regressor, 2024 was the best year
of performance for both models while 2023 was the worst year for the classifier, and 2020 was the worst year for the
regressor based on the MAE, R?, and Spearman coefficient. According to PFF, the 2023 draft class did not feature a
standout receiver and none of the top three prospects were nearly as developed as those from previous years
(Monson, 2023). Notably, Jaxon Smith-Njigba, widely regarded as the second-best receiver in the class, was
predicted to go undrafted by our classifier. This likely occurred because he did not run the 40-yard dash at the NFL
Combine—his unofficial Pro Day time was not included in the dataset—and because he missed most of the 2022
season with a hamstring injury, recording only 5 receptions for 43 yards. As our model uses only final-season
statistics for consistency, this limited his feature data considerably. Additionally, the imputed 40-yard dash was
beneficial and prevented dumping lots of early-season data but was not perfect even though it was based on other
speed/agility metrics. No solid evidence was found for the weak regressor performance in 2020. However, the strong
performance for both models in 2024 is likely due to the 2024 draft class being one of the strongest in the last
decade, but predicting draft position has more confounding variables compared to predicting whether a player is
drafted or not (Sikkema, 2024). While the regressor occasionally misranks individual players compared to other
mock drafts, it consistently succeeds in distinguishing between early- and late-round prospects. For instance, the
model’s top predicted wide receiver prospects in order were Brian Thomas, Xavier Legette, Malik Nabers, Rome
Odunze, Troy Franklin, and Marvin Harrison Jr. Another interesting player was George Pickens, who tore his ACL
in 2021 and missed most of his junior season, and finished with only 5 receptions for 107 yards after returning for
the latter part of the season. He was predicted to be drafted at 115.76 by our model and was ranked as the 21 best
receiver by our model, but he ended up being picked at 52 by the Pittsburgh Steelers as the 11" WR taken in his
class. This discrepancy highlights several limitations in using purely performance and combine data for draft
prediction. For Pickens, both behavior concerns and his ACL tear contributed to a wide range of team evaluations.

According to Bachar (n.d.), at least one NFL team removed Pickens from their draft board due to concerns about his

10



241  behavior during a pre-draft visit. Despite these concerns, the Steelers were willing to draft him and overlook his

242 injury history and other pre-draft concerns, valuing his high upside as a prospect. While the model penalized him for

243 lack of recent production, it couldn’t account for team-specific evaluations of his character, which can vary from

244 team to team.

245

246
Year
2020
2022
2023
2024
Avg

247

Classifier Classifier F1
Accuracy Score
0.8431 0.8824
0.8056 0.8727
0.6042 0.6667
0.8919 0.9355
0.7862 0.8393

248 Table 3. Model results

249

250

251  Discussion and conclusion

GradientBoostingClassifier Feature Importances

calculated_forty
o

Yos
calculated_vertical
calculated_broad_jump
Y.G
calculated_bench
calculated_cone
YR
calculated_shuttle
conf_Other

REC

wt

conf_SEC

ht_inches

conf_ACC

conf_Big 12
conf_Big Ten
conf_Pac-12

0.05 0.10 0.15 0.20 025 0.30 0.35 0.40
Importance

MAE on

Drafted

66.80

52.26

55.15

49.18

55.85

R? on Spearman
Drafted p
-0.0037 0.3006
0.1635 0.4200
0.1303 0.3562
0.3233 0.6262
0.1533 0.4257

CatBoostRegressor Feature Importances

calculated_forty
el

Y6
calculated_bench
calculated_vertical
wt

YDS
calculated_broad_jump
calculated_cone
YR
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conf_Other
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Figure 2. Feature Importance

Our two-stage modeling approach showed that predicting whether a WR gets drafted or not with a high level of
accuracy is possible and predicting the exact draft slot is also possible, but much harder to do and is easily affected
by outlying variables. The classifier achieved high accuracy across seasons, especially in 2024, indicating strong
ability to identify whether a WR would be drafted. The regressor being able to predict the predict the overall draft
position of a player within 49.18 picks indicate that for prospects with no anomalies in college or in the combine,
predicting their draft round within 2 rounds is possible. Further tuning of the data, such as removing players who
were injured in their final season, and more data for more recent years with less missing data could lead both models
to become significantly more accurate and can offer an can offer an unbiased, statistical ranking of WRs, free from
media or player hype. According to Figure 2, the 40-yard dash was the most important predictor for both models,
followed by college touchdowns. Both models’ reliance on college statistics and combine measures and not being
able to quantify features like injury history, pre-draft interviews, and play style/team fit make the model weaker and
show the problems associated with a purely-data approach. Regression is also a much harder task as it is impacted
by team needs, position depth, and off-field behavior, which is unquantifiable. For this reason, the Spearman
coefficient tells a different story: while the predicted draft positions may not always be numerically close, the
overall ranking of receivers produced by our regressor was similar to the true draft order. Our average Spearman
coefficient of 0.4257 suggests a moderate correlation between the actual draft order of WRs and the order predicted
by our model. Unlike MAE which penalizes large errors and punishes predictions off by a few rounds, the Spearman
shows relative rankings of receivers and is useful when picks aren’t as important. Teams in need of a receiver want
baseline rankings for prospects, and can further do research on prospects based on the non-biased rankings of the
model. They can also use the regressor’s predicted draft slot for a player to gauge where they end up being drafted,
and can use this to trade up in order to secure the player. Prospects looking to boost their stock can also refer to the
feature importance rankings to identify which areas of performance matter most and where to focus their
improvement. Ideally, reducing the MAE to within one round (MAE < 32), or even lower, would make the
predictions more practical. For example, misclassifying a WR3 as the WR6 might yield an MAE of 50 or 60, but the
relative ranking of the prospect is still informative—especially considering that 50+ wide receivers typically attend

the combine. This level of approximation can still provide meaningful value to NFL front offices during draft
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evaluations. Potential areas of improvement for the model include using Natural Language Processing (NLP) to gain
sentiment analysis on prospects, although this would only really be effective for the top prospects and could
overshadow those from smaller schools. Using multiple years of college reception data for players who have it can
also be useful, especially for players that ended up being injured or had minimal production in their final season of
college football. Additionally, grading each NFL team on their need for wide receivers in a given draft class based
on roster depth could improve the regressor’s ability to predict actual pick order by accounting for team-specific
drafting behavior. This approach can be applied to other positions in the NFL but may be more difficult due to the
lesser importance given to the combine and greater emphasis on intangibles for positions other than WR. It can also
be applied for predicting draft outcomes in other sports. Still, this methodology holds promise for broader draft

analysis in football and other sports.
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