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Abstract 5 

Injuries in the NBA have become consequential not only for team success but for the financial 6 

costs those teams suffer. This study develops a machine learning framework that predicts next-game 7 

injury risk using publicly available box-score data, player attributes, and injury history, then translates 8 

these probabilities into expected financial costs. Combining five datasets from 2010-2022, I derived 9 

sixteen workload and recency features and trained a Random Forest model optimized with five-fold 10 

cross-validation. At a 2% threshold for classification, the model predicts out-of-sample 69% of injuries 11 

while correctly ruling out 62% of healthy games, indicating better-than-chance predictive power is 12 

possible using solely public data. Feature-importance analysis identified workload shifts and rest as 13 

primary predictors. Extending beyond prediction, this study gives a new way to interpret the financial 14 

implications of injuries, looking at how strategic rest decisions can minimize financial loss. This study 15 

offers NBA organizations a data-driven tool linking injury prevention with financial optimization, 16 

bridging injury forecasting with economic decision-making.  17 
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1. Introduction 18 

Injuries have been a longstanding problem in all of sports, but in the NBA their impact stands 19 

out dramatically. With smaller rosters and superstars carrying a tremendous share of responsibility, the 20 

loss of one player can upend an entire season. Unlike football or baseball, where depth and roster size 21 

provide cushion for absences, a single injury to a team can swing playoff odds, alter franchise direction, 22 

and dramatically weaken league ratings. In the 2024 NBA season, for instance, teams like the 76ers 23 

and Pelicans were hit particularly hard with injuries and saw their postseason hopes vanish. These 24 

losses don’t just hurt on-the-court performance, but can wreck teams financially, with over $350 25 

million being spent on injury-related costs throughout an NBA season (Smith, 2016). Over time, staying 26 

ahead of NBA injuries isn’t just about player health and safety, it’s the key to a competitive edge 27 

against others. 28 

In the past, teams have approached injury prevention rigorously, using machine learning to 29 

analyze both publicly available data, like game statistics, along with data from wearable technologies, 30 

like heart rate or step count (Dowsett, 2022). While prior research on forecasting injuries using machine 31 

learning models have focused primarily on identifying injury odds, this study extends that work by 32 

translating predicted injury probabilities into expected financial costs, giving teams a quantitative 33 

framework to assess health and monetary  risk. In doing so, this research connects performance 34 

analytics with financial optimization, an area largely unexplored in current sports injury-forecasting 35 

literature. 36 

I set out to answer a practical question for NBA front offices: Can a machine learning model 37 

that combines regular box-score data, and player attributes effectively predict whether a player will 38 

miss the next game with an injury– and if so, how can these predictions be used to estimate the financial 39 

cost of injuries to NBA teams? To do this, I merged five public datasets (injury logs 2010-2022, game-40 

level box scores with minutes played, season-level box score and player attribute descriptions, team-41 
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level box scores per game, and player salaries) into a dataset where each observation is unique to a 42 

game-player. I engineered and derived 16 workload and recency metrics, treated missing values, and 43 

trained a Random Forest classifier for predicting injuries. To optimize my model, I utilized five-fold 44 

cross-validation to guide hyper-parameter tuning and performance estimation.  45 

To preview my results, I found that simple box score data can be useful for successfully 46 

predicting injuries. The model predicts 69% of injuries while correctly ruling out 62% of healthy 47 

games. In practice, this means I can generate early warnings for over two-thirds of forthcoming 48 

injuries, giving teams a powerful tool to minimize injury odds. Additionally, using the model’s logit 49 

injury probabilities, I demonstrate a framework to give teams financial insight into the benefits of 50 

resting players who are at high risk of injury, and show that this can be used to save upwards of $5.7M 51 

across teams in the NBA if optimized.  52 

 53 

1.1 Literature Review 54 

In the past, several studies have researched injury prediction in professional basketball. Cohan, 55 

Schuster, and Fernandez (2021) forecasted injuries using a deep learning model with injury history and 56 

game activity logs. They found that their model can learn to create meaningful features as a 57 

combination of raw features to predict injuries. In doing so, their model achieved 93.4% accuracy, with 58 

a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) of 0.80. Their research 59 

highlights the severe class imbalance within injury datasets, noting that a model predicting every case 60 

as a non-injury would still achieve approximately 98% accuracy. Charest et al.  (2021) studied the 61 

effect of distance and direction of back-to-back games in the NBA, ultimately finding that specific 62 

travel patterns worsen recovery and performance. Although my study doesn’t include travel distance 63 

between games, I do consider related metrics, such as days in between games or back-to-back games–64 
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measured by the rest variable. Lu et al. (2022) focused on analyzing lower-extremity muscle strains 65 

(LEMSs) within NBA injuries from 1999 to 2019. They compared performance across different 66 

classification models trained on NBA injury data, finding that the best predicting machine learning 67 

algorithm for predicting LEMs was XGBoost. They identified that pre-existing injury history helped 68 

best predict LEMs. Chan et. al (2024) conducted a systematic review on the relationship between 69 

workload spikes and injury risk. Accumulating evidence over 11 studies, they found that training load 70 

was correlated with injury risk, highlighting the importance of including workload variables inside ML 71 

prediction models. 72 

While Charest et al. (2021) and Lu et al. (2022) looked at specific drivers of injury, my research 73 

utilizes a wide array of publicly available data for injury prediction, similar to Cohan et al. (2021). 74 

Unlike prior studies, however, my study extends beyond prediction to include a cost-related threshold 75 

evaluation that weighs the consequences between false positives and false negatives. Additionally, I 76 

use an expected cost framework to identify the financial burden of player injuries, giving new insights 77 

into the economic dimension of injury prediction. 78 

 79 

2. Material 80 

This study utilizes multiple publicly available datasets from Kaggle to conduct the analysis. 81 

Together, these sources provide injury history, player-level workload, anthropometric information, 82 

and team-level game context. 83 

 84 
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2.1 Injuries Dataset  85 

This study uses the nba-injuries dataset from Kaggle (Hopkins, 2018). The dataset consists 86 

of public injury reports and game summaries, covering detailed information about player injuries 87 

across ten NBA seasons (2010–2020). The dataset includes fields like the date of the injury, the 88 

player who got injured, and the type of injury. This dataset is the foundation for the injury 89 

prediction variable in the study. Using this dataset, I identified who was injured and the type of 90 

injury that was suffered. In Figure 1, I show the five most frequent injuries reported in the dataset. 91 

Because the majority of these injuries are reported as “unknown” type, I constructed a binary injury 92 

label that groups all injuries together (i.e. “injury next game: yes/no”). For more details about 93 

“known” injury types, see Figure S1 where I sort known injuries by frequency and severity. 94 

 95 

Figure 1: Top 5 most frequent injuries within dataset 96 

 97 

 98 
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Certain types of injury labels are outside the scope of my prediction model:  illness and 99 

infection, health and safety protocols, load-management and conditioning, personal, legal, and 100 

administrative (considered to be injuries because they are still logged on the IL). Therefore I do 101 

not include them as injuries in forecasting. If a player has an injury detail that corresponds to the 102 

following values, the injury indicator will be counted as 0, instead of 1. I decided against dropping 103 

them from the dataset, because they still provide useful game-level information and help preserve 104 

the continuity of player records. The study acknowledges that this means there will be significantly 105 

more non-injuries than injuries in the dataset, and will talk about this in the limitations section.  106 

 107 

2.2 Team Statistics by Game and Season Dataset  108 

The NBA Traditional Stats dataset from Kaggle compiles team-level box score statistics 109 

across multiple NBA seasons (Jóźwiak, 2024). For this study, I used the final team scores for each 110 

game to craft close game indicators in each game. The purpose of this feature was to capture game 111 

intensity, under the hypothesis that players who regularly play in tightly competitive games may 112 

have higher physical stress and therefore a higher injury risk.  113 

 114 

2.3 Player Attributes  115 

The NBA players dataset from Kaggle contains biometric, biographic, and basic box score 116 

data from 1996 to 2022 (Cirtautas, 2023). I use variables such as height, weight, and season 117 

averages per player to look at whether player attributes change injury likelihood odds.  118 
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2.4 Player Stats  119 

The NBA Game Details dataset is a player-level dataset that contains useful box-score 120 

related metrics (Lauga, 2020). From this dataset, I use the “minutes played” variable, which is the 121 

minutes and seconds that a player plays per NBA game. I used the minutes played to construct the 122 

following features: (1) avg. minutes (last 5 games), (2) change in minutes since last game, (3) avg. 123 

high minute streak (last 20) and (4) high minute games in the last 20. Avg. minutes (last 5 games) 124 

measures the mean amount of games in a player’s last five games, which provides a short term 125 

glimpse of a player’s recent playing time. Change in minutes since the last game provides an 126 

understanding of how a player’s current game compares to the last game, with sudden workload 127 

changes having a dramatic impact on injury odds. Avg. high minute streak (last 20) measures the 128 

average length of consecutive-game stretches, within a player’s last 20 games, where they played 129 

heavy minutes (above 35 minutes). In other words, it provides an understanding of how often and 130 

how long a player sustains extended workloads without a break, highlighting patterns of 131 

accumulated risk. High minute games in the last 20 reflects how much games in a player’s 20 most 132 

recent games are of heavy minutes (above 35 minutes). All of these variables potentially signal 133 

workload spikes which may impact risk of injury.  134 

 135 

2.5 Player Salary 136 

The NBA Player Stats and Salaries 2010-2025 dataset is a player-level dataset that 137 

contains both box-score data and details on a player’s salary (Ratin21, 2025). From this dataset, I 138 

will be extracting the salaries for an understanding of the financial cost of injuries. The 139 

distribution of player salaries in the NBA is skewed right, with the league minimum being the 140 
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lowest possible salary and super-max contracts being some of the highest. Throughout the years, 141 

contracts have progressively climbed because of the increase in salary cap and inflation.   142 

 143 

3. Preprocessing the Datasets 144 

3.1 Merging the Datasets for Modeling 145 

To construct the dataset that my model uses, I merged across all previous datasets by 146 

player-game.  147 

 148 

3.2 Feature Engineering in The Merged Dataset 149 

An indicator for close basketball games is included to measure how game intensity may 150 

affect injury odds. If a game is closer, is the player playing harder? Could this put a higher demand 151 

on their body? To add an indicator for close games, I have to consider multiple factors. The NBA 152 

considers a close game as a game where the point differential is confined within a 10 point margin 153 

before the start of the fourth quarter and narrows down to a 5 point or less disparity at the end of 154 

the game. For the sake of simplicity and because I don’t have access to the score of the game at 155 

the start of the fourth quarter, I will be considering close games as games with a point differential 156 

of 5 points or less by the end.  157 

I used minutes played and prior player performance statistics to engineer a series of 158 

workload and recency variables. First, I created binary indicators for high-minute games (>30 159 

minutes) and mid-minute games (>23 minutes), and then calculated streaks of consecutive 160 
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occurrences in each respective category. From there, I calculated rolling metrics over a player’s 161 

last 20 and last 5 games, including the number and average length of high- and mid-minute streaks 162 

within trailing games. I also added short-term features that capture workload and recovery such as 163 

change in minutes since last game, days of rest, and days since last injury. To observe a given 164 

player’s injury history, I included season-to-date injury counts and total career injuries. Finally, I 165 

incorporated previous-season averages (rebounds, 3-point attempts, free-throw attempts, and 166 

minutes) to provide an understanding of player tendencies.  167 

 168 

3.3 Cleaning the Datasets for NA and Filling in Values 169 

Some features contained missing values, which could interfere with the quality of my 170 

modeling fits. I resolved these missing values in the following ways:  171 

1. Categorical fields. 172 

The final dataset contains a variable called Relinquished. In the context of my study, this 173 

is a team transferring a player to the injured list. In games where no player is transferred, 174 

Relinquished cannot be meaningfully interpreted; therefore I replaced NA entries in 175 

Relinquished with the string “unknown”. 176 

2. Numerical box-score statistics and recovery metrics (mean imputation). 177 

16% (22631/140879) of my observations had NA values in box-score related statistics., 178 

because omitting NA values in the dataset for box-score statistics leads to significant data 179 

loss,  for conventional game-level performance figures–e.g., three-point and free-throw 180 

counts and percentages, rebounds, and the rest variable–I first used each player’s own 181 

seasonal mean wherever at least one non-missing value existed. If an athlete had no 182 
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observed data in a given column, I substituted the league-wide mean. Following common 183 

practice in sports workload analysis (see Benson et al., 2021), I used each player’s seasonal 184 

mean wherever a non-missing value existed; if none existed, I substituted the league-wide 185 

mean. For missing age values, I first looked for if the player had any previous existing age 186 

in other years, and attempted to use the difference in seasons as either an addition or 187 

subtraction to calculate a missing age value. If the player didn’t have any preexisting age 188 

values in the dataset, I used the overall mean.  189 

3. Streak, recency, and workload indicators (median imputation). 190 

Variables that are inherently skewed–such as streak magnitudes (Last high‑minute streak 191 

length, Avg. high‑minute streak (last 20), etc.), workload counts (High‑minute games in 192 

last 20, Avg. minutes (last 5 games)), and recency measures (Days since last injury)–were 193 

imputed with the within-player median to mitigate the influence of outliers. This approach 194 

is described as appropriate for skewed data (Mohammed et al., 2021). As with the mean 195 

strategy above, I fell back on the overall-sample median only when a player was missing 196 

all previous values. 197 

 198 

3.4 Final Dataset 199 

The final dataset contains 21 total variables, where each observation is identified by a 200 

unique game-player. See Table 1 for details. The data spans from 2012 to 2023 and includes 8253 201 

unique games and 1211 unique players. On average, players played 20.14 minutes per game (SD 202 

= 12.60), with an injury rate of 0.03 (SD = 0.17). Players typically had around 16 games of rest 203 

between games (SD= 56.34), with a total of 9151 games where a player played on a back-to-back 204 
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(one day of rest). While the dataset’s mean rest time is 16 days, this value is skewed by the 205 

significant number of low-minute or inactive players (as seen by the median of 4). The typical 206 

number of days separating a player and his last injury is 254.49 (SD = 312.23). 207 

 208 

Table 1: Descriptive Statistics 209 

 210 
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 211 

4. Method 212 

I modeled injury risk using a Random Forest classifier (RF) coupled with 5-fold cross-213 

validation. The RF method was preferred for three reasons. First, it can predict injuries with a non-214 

linear interaction that is highly dependent on multiple complex factors, such as workloads, player 215 

playstyle tendencies from previous season averages, and player attributes. Second, because each 216 

tree only considers a random subset of variables in each split, the model helps lessen the impact 217 

of highly correlated variables and reduces over-fitting. Third, the model allows for easy post-hoc 218 

interpretability. More specifically, the algorithm enables the computation of Gini-based 219 

importance scores allowing us to identify pertinent metrics.  220 

Model assessment and parameter tuning were done using 5-fold cross-validation. The data 221 

was stratified into five  subsets, with four out of the five subsets being used as training data, and 222 

one out of five subsets used as testing data. I repeated this five times for five different subset 223 

combinations and checked confusion matrix results to ensure that my results are robust and 224 

generalize to different test samples.  225 

The Random Forest Model is a machine learning model that makes predictions by 226 

combining many small decision trees. Each tree looks at a random portion of the data and different 227 

player statistics, adopting its own pattern of when injuries occur. The model then averages all the 228 

tree's predictions to make one overall injury probability. This approach is useful as it helps capture 229 

complex patterns while avoiding overfitting to any single part of the data.  230 
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This study implements the RF model using the “randomForest” package in R. 231 

Hyperparameters within the function include the following: ntree, mtry, nodesize, maxnodes, 232 

replace, sampsize, and classwt among others.  233 

The number of trees (ntree) was fixed at 500, consistent with the default in R’s 234 

randomForest package. As noted by Breiman (2001), the generalization error of a random forest 235 

converges as the number of trees increases, and Liaw & Wiener (2002) observe that the out-of-236 

bag error stabilises once ‘enough trees’ are grown. Thus, 500 trees was chosen because it provides 237 

model stability without excessive computational cost.  238 

The mtry parameter controls the amount of variables that are considered at each split. A 239 

smaller value increases the diversity among the trees but weakens the individual trees, while a 240 

larger value reduces bias but risks high correlation. In section 5.1, mtry is fitted by maximizing 241 

the area under the ROC curve.  242 

I chose the default values (nodesize= 1; maxnodes= NULL) for the trees, allowing them to 243 

be grown to full depth. This setting minimizes bias and allows trees within the RF model to capture 244 

complex interactions. Higher nodesize or lower maxnodes values would have restricted tree depth, 245 

leading to higher bias but lower variance among the trees.  246 

Bootstrap sampling parameters were also set to their default values (replace = TRUE; samp 247 

size = n). This allows for each tree in the RF to be trained on a more diverse dataset created by 248 

random sampling with replacement. The result lowers variance and reduces overfitting once the 249 

trees are averaged.  250 

Class weights in the Random Forest model were set to the default value (classwt = NULL), 251 

which weighed both injuries and non-injuries as equal. While class weighting is useful in 252 

addressing imbalanced outcomes by penalizing misclassification of injuries more heavily, I chose 253 
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to handle imbalance through threshold tuning. Doing this allowed me to directly control the trade-254 

off between false-positives and false-negatives to reflect the practical costs of missed injuries vs 255 

false alarms. 256 

Threshold is the final classification layer of the RF model. Prior to this layer, my RF model 257 

generates a logit (or “probability”) of getting injured in the next game. The threshold converts this 258 

logit into a binary classification (“yes/no”).  Lower thresholds (close to 0) mean that most logits 259 

will be classified as “yes”, while higher thresholds (close to 1) classify most logits as “no”. Section 260 

5.2 details the process for which the threshold is fitted.  261 

 262 

5. Results 263 

The goal of this study is to develop a machine learning framework that predicts next-game 264 

injury risk using publicly available data, then translate these probabilities into expected financial 265 

costs. To accomplish this, the result section follows four steps: (1) tune and validate the model to 266 

make sure it works beyond chance, (2) pick a decision threshold that balances the false positives 267 

and false negatives based on cost, (3) show the out-of-sample performance of the model at that 268 

optimal threshold, (4) identify which features matter most for predicting injuries, and (5) use injury 269 

probabilities to generate an understanding of financial risk.  270 

 271 

5.1 Parameter Tuning 272 

To tune the random forest’s mtry hyperparameter, I fixed mtry to values between 1 and 16 273 

(the total number of variables that are used for prediction) and computed ROC points across a grid 274 
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of decision thresholds for each fold of a 5-fold cross-validation. The thresholds were 0.9, 0.5, 0.15, 275 

0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.007, 0.005, 0.003, and 0.001. As the 276 

threshold decreases toward 0, both the true-positive rate (TPR) and false-positive rate (FPR) 277 

increase, ultimately tracing out the ROC relationship (see Figure 2A). 278 

For each fold, I recorded FPR and TPR at every threshold, then averaged these across the 279 

five-folds to obtain an average ROC curve (Figure 2A, black line). I included a 45° reference line 280 

to represent random chance. Because the average ROC curve sits well above this chance line, the 281 

model performs better than random classification of injuries.  282 

To identify the optimal mtry value for the random forest model, I approximated the area 283 

under the average ROC curve (AUC) for every value of mtry and selected the value that produced 284 

the highest value (Figure 2B, red line). I estimated the AUC by summing the true positive rates 285 

(TPR) across all thresholds, as the AUC represents the model’s overall ability to distinguish 286 

between injured and non-injured players. A higher AUC indicates stronger class separation 287 

(injuries from non-injuries). Among all possible configurations, the model with mtry = 16 achieved 288 

the highest approximate AUC of 8.087, slightly outperforming other values of mtry (2nd best mtry 289 

= 14, AUC = 8.078; 3rd best mtry = 13, AUC = 8.077). 290 

 291 

5.2 Threshold Testing 292 

To determine which threshold minimizes cost, I first define a cost ratio between false 293 

negatives and false positives. Then, I plot an estimated cost score based on three cost ratios (0.5, 294 

1, 1.5) in three different colors against different thresholds from 0 to 0.9 (see Figure 2C). Cost 295 

ratio, c, is defined as 296 

c  = cost of a FN (false negative) / cost of a FP (false positive).  297 
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When c < 1, false negatives are being weighed as less than false positives. At a c = 1, false 298 

negatives and false positives are viewed equally, while c > 1 implies that a false negative is viewed 299 

as more costly than a false positive. The true cost ratio will vary by team, player, and contract. 300 

Therefore, I report results at c = 1, as a neutral expected-value baseline that does not include 301 

unverified cost-related assumptions, but my methodology is robust to any cost ratio. For a cost 302 

ratio of 1, the threshold that minimizes cost is 0.02 (minimum of green line in Figure 2C).  303 

 304 

Figure 2: Model performance evaluation for the Random Forest classifier  305 

(A) ROC curves averaged across folds for mtry = 16, (B) area under the ROC (AROC) across mtry 306 

values, and (C) cost–threshold curves illustrating false-negative/false-positive trade-offs. 307 

 308 

 309 
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 310 

 311 

 312 

5.3 Optimal Model and Feature Importance 313 

In Table 2, I present the confusion matrix for my model. At a conservative 2% threshold, I 314 

predicted 69% of true, out-of-sample, injuries while correctly ruling out 63% of healthy games. In 315 

practice, this means I can generate early warnings for roughly two thirds of forthcoming injuries, 316 

giving teams a  tool to minimize injury odds. 317 

 318 

Table 2. Confusion matrix  319 

Means and standard errors (in parentheses) across 5 folds. Accuracy and proportion correct in grey. 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 Actual  

 

 

Predicted 

 0 1  

0 13577.20 

(41.32) 

182.60 

(8.89) 

 

0.99 

1 8160.00 

(47.13) 

400.20 

(7.55) 

 

0.05 

   

 0.62 

 

0.69 

Accuracy 

0.63 



18 

 

After training the Random Forest model, I examined which variables most strongly 332 

influenced injury prediction through their feature importance score. A feature importance score 333 

measures how much a variable contributes to reducing impurity or how well a variable helps the 334 

model separate injured from non-injured players. High scores mean the feature was more useful 335 

for making cleaner splits between injuries vs non-injuries. Feature importance scores (Gini gain) 336 

ranked the following predictors as the most important predictors, in the following order: change 337 

in minutes since last game, average minutes in the last 5 games, days since last injury, and rest. 338 

The following variables were the least predictive of injury: age, number of high minutes played 339 

(games above 30 minutes played) in the last 20 games, player height, and number of injuries 340 

previously in the season. 341 

The results are intuitive: players who have a sudden change in minutes compared to their 342 

last game, have suffered an injury recently, have a recency in the last 5 games of playing a 343 

significant amount of time, and aren’t well rested have a higher injury risk.  Specifically, players 344 

with more rest have significantly lower injury odds compared to those on 0-5 days of rest. Most 345 

injuries tend to happen on short amounts of rest, while long rests minimize injury chances, as 346 

expected. Contrary to my expectations, physical attributes, like age and a player’s height, were not 347 

particularly useful to the model. This is inconsistent with previous findings such as Lu et al. (2022), 348 

where age was a driving factor in the predictions.   349 

For days since the player’s last injury, I find that players who re-injure tend to have had 350 

less time since their previous injury. I find that for a player’s change in minutes since their previous 351 

game, a small increase in minutes is a mild risk amplifier, while extreme shifts either more or less 352 

are red flags. For the variable encoding the average number of minutes played in the last five 353 

games for a player, I found that the majority of injuries happened above the 20 minute zone, and 354 
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injury risk slowly increased until it peaked at around 30 minutes. Like the rest of the top 4 355 

predictors, injuries also happen frequently under 20 minutes, which suggests that Avg. minutes 356 

(last 5 games) is most powerful in combination with other predictors, and not a standalone 357 

predictor.  358 

 359 

Figure 3:  Feature importance score for variables within the model 360 

 361 

5.4 Expected Cost and Salary Analysis 362 

While previous studies have looked at forecasting injury probabilities using box-score 363 

related data, they have all stopped at predicting who is likely to get injured, without examining the 364 
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financial consequences of those injuries. Utilizing salaries, and the predicted probabilities of 365 

injuries generated in the Random Forest Model, I construct a method for calculating expected cost:  366 

 367 

E[Cost] = P(injury) x (salary ÷ 82) x (average duration of injury) 368 

 369 

Here P(injury) is the model’s predicted probability of an injury, and salary/82 represents 370 

the player’s per game salary, assuming an 82 game regular season. The average duration of injury 371 

is calculated as the mean number of games typically missed per injury. This calculation ultimately 372 

allows for a per-game estimation of a player’s financial risk on the team. Figure 4A shows an 373 

example team (New Orleans, 2018), where each player’s expected injury cost fluctuates 374 

throughout the season based on model predictions.  375 

To complement this estimate, I calculate the actual financial cost of injury by multiplying 376 

the number of games missed after each injury by the player’s per-game salary. This allows for a 377 

direct comparison between the expected and realized financial losses. Expected cost values were 378 

derived from the model’s predicted probability of injury for each player, multiplied by their per-379 

game salary and the average duration of injury. Figure 4B plots expected versus actual financial 380 

costs, showing a high degree of correlation between the model’s expected cost and real financial 381 

outcomes (r = 0.955). Figure 4C shows the aggregated total expected costs by team and season. 382 

Expected cost has gone up throughout the years as a result of inflationary changes of salary. All 383 

together, these analyses demonstrate how injury prediction models can be used to estimate 384 

financial risk to a team. 385 

 386 

 387 
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 388 

Figure 4: Expected and realized injury-related financial costs 389 

(A) Player-level expected cost heatmap for New Orleans (2018), (B) correlation between expected 390 

and actual team-level financial losses, and (C) league-wide expected injury costs over time (2012–391 

2022). 392 
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 394 

 395 

 396 

 397 

 398 
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 401 

 402 

 403 

 404 

 405 
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 406 

5.5 League-Wide Injury Cost Simulations 407 

To explore the potential value of rest, I simulated a scenario in which high-risk players 408 

were rested before their next games. In this scenario, I selected a threshold that would be 409 

considered risky, and determined the days between the player's current game and the next team 410 

game that he could participate in (within the season). To demonstrate how to calculate league-wide 411 

costs, I selected a risky threshold at 0.10 and carried out cost-analysis. This selection is arbitrary, 412 

but it allows teams to take on a relatively high level of injury risk tolerance. 413 

Building on this, I simulated the effect of resting players exceeding the threshold, rather 414 

than letting them play the next game. Specifically, I increased each player’s rest and days since 415 

last injury variables by the number of days between the current and next game.  416 

I then applied the previously developed Random Forest model using these updated 417 

variables to generate new injury probabilities. Using these revised probabilities, I recalculated each 418 

player’s expected injury cost. Comparing the new expected costs to my original estimates allowed 419 

me to quantify the financial effect of resting high-risk players for one game. 420 

Table 2 presents the financial outcomes of this simulation. Across multiple seasons, I show 421 

original estimates (Expected Cost Before), new estimates with simulated rest (Expected Cost 422 

Updated), and the total savings from simulated rest across all teams in the NBA (League Wide 423 

Savings). Positive League Wide Savings indicates cost savings from avoided injuries, while 424 

negative League Wide Savings would indicate losses due to unnecessary rest. Note that League 425 

Wide Savings is positive for every season between 2012 and 2023, and achieves a maximum of 426 
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approximately $5.7M in 2021. This estimate is also conservative, as 9,551 observations in the 427 

dataset lack salary information, meaning true savings are likely even higher.  428 

This framework can be extended to evaluate the effects of giving players multiple games 429 

of rest, allowing for estimation of optimal rest durations. Alternatively, it can be coupled with 430 

additional metrics related to the contribution of a player to each game, allowing teams to weigh 431 

the cost-benefit of resting a high-injury-risk player. 432 

 433 

 434 

Table 2: Expected financial savings of simulated rest 435 

 436 

 437 

Discussion  438 

This study set out to answer a practical question for NBA front offices: Can a machine 439 

learning model that combines publicly available data be used to not only forecast player injuries, 440 

but also to estimate their financial impact?  441 

To answer this, I merged five public datasets (injury logs 2010-2022, game-level box 442 

scores with minutes played, player salary details by season, season-level box score and player 443 

attribute descriptions, and team-level box scores per game) into a single game, individual player 444 
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based dataset. I engineered and derived 16 workload and recency metrics, treated missing values, 445 

and trained a Random Forest classifier for predicting injuries. To optimize the model, I utilized 5-446 

fold cross-validation to guide hyper-parameter tuning (mtry testing 1-16, threshold testing) and 447 

tested the model out-of-sample for performance estimation.  448 

My results show that simple box score data can predict injuries with above-chance 449 

accuracy. At a 2% threshold, the model predicted around 69% of true injuries out-of-sample, while 450 

ruling out 62% of healthy games, suggesting that my model can offer teams early warnings for 451 

most upcoming injuries well above chance.  Beyond predictive accuracy, the integration of 452 

financial risk modeling introduces a novel extension of injury forecasting. Across seasons, 453 

expected injury-related costs showed steady inflation from $53.1M in 2012 to $471.1M in 2022, 454 

closely aligning with the model’s updated estimates after rest simulation. On average, resting 455 

players above the injury-risk threshold produced league-wide savings each year, peaking at 456 

$5.75M in 2021 (Table 2). By translating injury probabilities into salary-adjusted costs, my 457 

analysis offers teams a quantitative framework for managing both player health and financial cost.  458 

 459 

 460 

Feature Interpretation  461 

Because the dataset only had a small proportion of injuries, the accuracy of the model 462 

exceeded my expectations. Since I decided on a lower injury threshold (0.02), I accepted a high 463 

number of false positives in exchange for identifying more true injuries. The average across five-464 

folds yielded a 63% specificity (TN/(TN+FP)) and 69% sensitivity (TP/(TP+FN)). The top 465 

features in my model illustrate that changes in player workload and recovery dynamics are key 466 

drivers of injury likelihood. Any spikes in last game minute change are red flags for injury 467 
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likelihood. The amount of days since the players’ last injury is also a valuable metric, as if the time 468 

is shorter, there may be a chance that the player didn’t fully recover from his previous injury. 469 

Average minutes of a players’ last 5 games gives a representation of how much time a player has 470 

been playing recently (around the past two weeks). Rest is a powerful metric as it totals the number 471 

of days a player has in between games to potentially recover their body.  472 

 473 

Practical Implications  474 

My research is most impactful for NBA organizations. For load-management staff the 475 

model provides a flag for early-warnings toward injuries. Rather than simply proving the fact that 476 

longer rest lowers injury risk, the model quantifies when and for whom rest produces the greatest 477 

economic return. In particular, rest emerged as one of the strongest predictors in the feature-478 

importance analysis, and the financial simulation demonstrated that players flagged as high-risk 479 

who were strategically rested generated expected savings for teams. For example, given the sheer 480 

amount of money allocated to star players, the expected savings from model-guided rest decisions 481 

remained positive throughout every season.  482 

Future research can extend this framework by refining the optimal amount of days to look 483 

at alternative scenarios for player rest, and determining a truly optimal cost ratio between false 484 

positives and false negatives. By integrating salary and injury prediction, my research moves 485 

beyond just injury prediction, and gives outlets into what can be done with injury probabilities.  486 

 487 

Limitations 488 

There are three main limitations to my findings. First, when I decided to use previous 489 

season statistics as features in my model, I sacrificed 16% (22631/140879) of total rows of the 490 
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final data. However, I decided that it was a reasonable compromise because previous season 491 

statistics such as rebounds and free-throw attempts give insight into certain players’ physical 492 

playstyle. Especially with free-throw attempts, a player getting fouled is something that could 493 

greatly increase injury odds. Second, one of my engineered predictors (number of close games in 494 

the last 20 games) rely on end of game point differentials which is a simplification from the NBA’s 495 

definition of close games. Additionally, throughout the injury dataset, the third most frequent type 496 

of injury is “Placed on IL” with no other description. With this description, I am unable to 497 

determine if “Placed on IL” is something that is an injury that could be predicted or something 498 

else like being placed on the IL for personal reasons or NBA health and safety protocols. 499 

Throughout my study, I will be treating “Placed on IL” as a predictable injury, which may increase 500 

the amount of injuries in the dataset. Furthermore, I do not consider illness and infections as 501 

injuries. This means the model treats many instances where players log big minutes, get sick, and 502 

miss the next game as non-injuries (0). The model may learn that heavy minutes are less risky than 503 

they really are if there are significant amounts of high minute trends that lead to sickness. Finally 504 

I acknowledge that the salary analysis process may be an oversimplification of real-world 505 

scenarios. For example, I don’t take into account the money lost from rest, and I assume that salary 506 

is evenly distributed across an 82-game season, which may be inaccurate considering NBA 507 

playoffs. Additionally, variables were not reset at the end of each season and were continuously 508 

counted across the end and start of seasons. 509 

 510 

Conclusion 511 

 This research demonstrates that publicly available data and machine-learning methods can 512 

meaningfully forecast NBA injury risk and, at the same time, quantify its financial consequences. 513 

By combining injury-probability generated from a machine learning model with salary-based cost 514 
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estimates, the study introduces a new framework for NBA teams that connect topics in sports 515 

medicine and health analytics to economic decision making in basketball. While this study doesn’t 516 

dive into an optimization system, the approach demonstrates how predictive models can inform 517 

load-management strategy while reducing expected salary loss. Future work may work on 518 

expanding this framework by optimizing rest-time, deciding on a better “risk-threshold”, or taking 519 

into account the financial cost of resting players. Ultimately, injury forecasting offers front offices 520 

a simple, yet effective tool to preserve both player health and economic success.  521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 
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Supplementary 589 

To get an understanding of the frequency and different types of injury that occur in my 590 

dataset, I construct three severity tiers to categorize injuries for better understanding: severe, 591 

moderate, and minor. Frequency of injuries in my dataset can be  seen in Graph A. In graph B, the 592 

top five most frequent injuries are displayed by severity. In my dataset, the highest frequency in 593 

the severe injury category were injuries that sidelined players for the season but with no further 594 

injury detail. The second most common was a sprained right ankle that ruled players out for the 595 

season, followed by a sprained left ankle of the respective nature. For the moderate tier, regular 596 

sprained left and right ankles were of highest frequency. For minor injuries, sore left and right 597 

knees were the most frequent. It is also noticeable that there are much more minor and moderate 598 

injuries compared to severe ones. 599 


