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Using Injury-Risk Forecasting to Quantify
Financial Impact in the NBA

Ethan Wang

Abstract

Injuries in the NBA have become consequential not only for team success but for the financial
costs those teams suffer. This study develops a machine learning framework that predicts next-game
injury risk using publicly available box-score data, player attributes, and injury history, then translates
these probabilities into expected financial costs. Combining five datasets from 2010-2022, I derived
sixteen workload and recency features and trained a Random Forest model optimized with five-fold
cross-validation. At a 2% threshold for classification, the model predicts out-of-sample 69% of injuries
while correctly ruling out 62% of healthy games, indicating better-than-chance predictive power is
possible using solely public data. Feature-importance analysis identified workload shifts and rest as
primary predictors. Extending beyond prediction, this study gives a new way to interpret the financial
implications of injuries, looking at how strategic rest decisions can minimize financial loss. This study
offers NBA organizations a data-driven tool linking injury prevention with financial optimization,

bridging injury forecasting with economic decision-making.
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1. Introduction

Injuries have been a longstanding problem in all of sports, but in the NBA their impact stands
out dramatically. With smaller rosters and superstars carrying a tremendous share of responsibility, the
loss of one player can upend an entire season. Unlike football or baseball, where depth and roster size
provide cushion for absences, a single injury to a team can swing playoff odds, alter franchise direction,
and dramatically weaken league ratings. In the 2024 NBA season, for instance, teams like the 76ers
and Pelicans were hit particularly hard with injuries and saw their postseason hopes vanish. These
losses don’t just hurt on-the-court performance, but can wreck teams financially, with over $350
million being spent on injury-related costs throughout an NBA season (Smith, 2016). Over time, staying
ahead of NBA injuries isn’t just about player health and safety, it’s the key to a competitive edge
against others.

In the past, teams have approached injury prevention rigorously, using machine learning to
analyze both publicly available data, like game statistics, along with data from wearable technologies,
like heart rate or step count (Dowsett, 2022). While prior research on forecasting injuries using machine
learning models have focused primarily on identifying injury odds, this study extends that work by
translating predicted injury probabilities into expected financial costs, giving teams a quantitative
framework to assess health and monetary risk. In doing so, this research connects performance
analytics with financial optimization, an area largely unexplored in current sports injury-forecasting
literature.

I set out to answer a practical question for NBA front offices: Can a machine learning model
that combines regular box-score data, and player attributes effectively predict whether a player will
miss the next game with an injury— and if so, how can these predictions be used to estimate the financial
cost of injuries to NBA teams? To do this, I merged five public datasets (injury logs 2010-2022, game-

level box scores with minutes played, season-level box score and player attribute descriptions, team-
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level box scores per game, and player salaries) into a dataset where each observation is unique to a
game-player. I engineered and derived 16 workload and recency metrics, treated missing values, and
trained a Random Forest classifier for predicting injuries. To optimize my model, I utilized five-fold
cross-validation to guide hyper-parameter tuning and performance estimation.

To preview my results, I found that simple box score data can be useful for successfully
predicting injuries. The model predicts 69% of injuries while correctly ruling out 62% of healthy
games. In practice, this means I can generate early warnings for over two-thirds of forthcoming
injuries, giving teams a powerful tool to minimize injury odds. Additionally, using the model’s logit
injury probabilities, I demonstrate a framework to give teams financial insight into the benefits of
resting players who are at high risk of injury, and show that this can be used to save upwards of $5.7M

across teams in the NBA if optimized.

1.1 Literature Review

In the past, several studies have researched injury prediction in professional basketball. Cohan,
Schuster, and Fernandez (2021) forecasted injuries using a deep learning model with injury history and
game activity logs. They found that their model can learn to create meaningful features as a
combination of raw features to predict injuries. In doing so, their model achieved 93.4% accuracy, with
a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) of 0.80. Their research
highlights the severe class imbalance within injury datasets, noting that a model predicting every case
as a non-injury would still achieve approximately 98% accuracy. Charest et al. (2021) studied the
effect of distance and direction of back-to-back games in the NBA, ultimately finding that specific
travel patterns worsen recovery and performance. Although my study doesn’t include travel distance

between games, I do consider related metrics, such as days in between games or back-to-back games—
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measured by the rest variable. Lu et al. (2022) focused on analyzing lower-extremity muscle strains
(LEMSs) within NBA injuries from 1999 to 2019. They compared performance across different
classification models trained on NBA injury data, finding that the best predicting machine learning
algorithm for predicting LEMs was XGBoost. They identified that pre-existing injury history helped
best predict LEMs. Chan et. al (2024) conducted a systematic review on the relationship between
workload spikes and injury risk. Accumulating evidence over 11 studies, they found that training load
was correlated with injury risk, highlighting the importance of including workload variables inside ML
prediction models.

While Charest et al. (2021) and Lu et al. (2022) looked at specific drivers of injury, my research
utilizes a wide array of publicly available data for injury prediction, similar to Cohan et al. (2021).
Unlike prior studies, however, my study extends beyond prediction to include a cost-related threshold
evaluation that weighs the consequences between false positives and false negatives. Additionally, I
use an expected cost framework to identify the financial burden of player injuries, giving new insights

into the economic dimension of injury prediction.

2. Material

This study utilizes multiple publicly available datasets from Kaggle to conduct the analysis.
Together, these sources provide injury history, player-level workload, anthropometric information,

and team-level game context.
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2.1 Injuries Dataset

This study uses the nba-injuries dataset from Kaggle (Hopkins, 2018). The dataset consists
of public injury reports and game summaries, covering detailed information about player injuries
across ten NBA seasons (2010-2020). The dataset includes fields like the date of the injury, the
player who got injured, and the type of injury. This dataset is the foundation for the injury
prediction variable in the study. Using this dataset, I identified who was injured and the type of
injury that was suffered. In Figure 1, I show the five most frequent injuries reported in the dataset.
Because the majority of these injuries are reported as “unknown” type, I constructed a binary injury
label that groups all injuries together (i.e. “injury next game: yes/no”’). For more details about

“known” injury types, see Figure S1 where I sort known injuries by frequency and severity.

Figure 1: Top 5 most frequent injuries within dataset

unknown/non injury applicable 10544

activated from IL 1738

placed on IL 885

Injury Detail

placed on IL with illness 253

placed on IL with NBA health and safety protocols 183

0 25000 50000 75000 100000
Frequency
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Certain types of injury labels are outside the scope of my prediction model: illness and
infection, health and safety protocols, load-management and conditioning, personal, legal, and
administrative (considered to be injuries because they are still logged on the IL). Therefore I do
not include them as injuries in forecasting. If a player has an injury detail that corresponds to the
following values, the injury indicator will be counted as 0, instead of 1. I decided against dropping
them from the dataset, because they still provide useful game-level information and help preserve
the continuity of player records. The study acknowledges that this means there will be significantly

more non-injuries than injuries in the dataset, and will talk about this in the limitations section.

2.2 Team Statistics by Game and Season Dataset

The NBA Traditional Stats dataset from Kaggle compiles team-level box score statistics
across multiple NBA seasons (J6zwiak, 2024). For this study, I used the final team scores for each
game to craft close game indicators in each game. The purpose of this feature was to capture game
intensity, under the hypothesis that players who regularly play in tightly competitive games may

have higher physical stress and therefore a higher injury risk.

2.3 Player Attributes

The NBA players dataset from Kaggle contains biometric, biographic, and basic box score
data from 1996 to 2022 (Cirtautas, 2023). I use variables such as height, weight, and season

averages per player to look at whether player attributes change injury likelihood odds.
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2.4 Player Stats

The NBA Game Details dataset is a player-level dataset that contains useful box-score
related metrics (Lauga, 2020). From this dataset, I use the “minutes played” variable, which is the
minutes and seconds that a player plays per NBA game. I used the minutes played to construct the
following features: (1) avg. minutes (last 5 games), (2) change in minutes since last game, (3) avg.
high minute streak (last 20) and (4) high minute games in the last 20. Avg. minutes (last 5 games)
measures the mean amount of games in a player’s last five games, which provides a short term
glimpse of a player’s recent playing time. Change in minutes since the last game provides an
understanding of how a player’s current game compares to the last game, with sudden workload
changes having a dramatic impact on injury odds. Avg. high minute streak (last 20) measures the
average length of consecutive-game stretches, within a player’s last 20 games, where they played
heavy minutes (above 35 minutes). In other words, it provides an understanding of how often and
how long a player sustains extended workloads without a break, highlighting patterns of
accumulated risk. High minute games in the last 20 reflects how much games in a player’s 20 most
recent games are of heavy minutes (above 35 minutes). All of these variables potentially signal

workload spikes which may impact risk of injury.

2.5 Player Salary

The NBA Player Stats and Salaries 2010-2025 dataset is a player-level dataset that
contains both box-score data and details on a player’s salary (Ratin21, 2025). From this dataset, I
will be extracting the salaries for an understanding of the financial cost of injuries. The

distribution of player salaries in the NBA is skewed right, with the league minimum being the
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lowest possible salary and super-max contracts being some of the highest. Throughout the years,

contracts have progressively climbed because of the increase in salary cap and inflation.

3. Preprocessing the Datasets

3.1 Merging the Datasets for Modeling

To construct the dataset that my model uses, I merged across all previous datasets by

player-game.

3.2 Feature Engineering in The Merged Dataset

An indicator for close basketball games is included to measure how game intensity may
affect injury odds. If a game is closer, is the player playing harder? Could this put a higher demand
on their body? To add an indicator for close games, I have to consider multiple factors. The NBA
considers a close game as a game where the point differential is confined within a 10 point margin
before the start of the fourth quarter and narrows down to a 5 point or less disparity at the end of
the game. For the sake of simplicity and because I don’t have access to the score of the game at
the start of the fourth quarter, I will be considering close games as games with a point differential
of 5 points or less by the end.

I used minutes played and prior player performance statistics to engineer a series of
workload and recency variables. First, I created binary indicators for high-minute games (>30

minutes) and mid-minute games (>23 minutes), and then calculated streaks of consecutive
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occurrences in each respective category. From there, I calculated rolling metrics over a player’s

last 20 and last 5 games, including the number and average length of high- and mid-minute streaks

within trailing games. I also added short-term features that capture workload and recovery such as

change in minutes since last game, days of rest, and days since last injury. To observe a given

player’s injury history, I included season-to-date injury counts and total career injuries. Finally, I

incorporated previous-season averages (rebounds, 3-point attempts, free-throw attempts, and

minutes) to provide an understanding of player tendencies.

3.3 Cleaning the Datasets for NA and Filling in Values

Some features contained missing values, which could interfere with the quality of my

modeling fits. I resolved these missing values in the following ways:

1.

Categorical fields.
The final dataset contains a variable called Relinquished. In the context of my study, this
is a team transferring a player to the injured list. In games where no player is transferred,
Relinquished cannot be meaningfully interpreted; therefore I replaced NA entries in
Relinquished with the string “unknown”.

Numerical box-score statistics and recovery metrics (mean imputation).
16% (22631/140879) of my observations had NA values in box-score related statistics.,
because omitting NA values in the dataset for box-score statistics leads to significant data
loss, for conventional game-level performance figures—e.g., three-point and free-throw
counts and percentages, rebounds, and the rest variable-I first used each player’s own

seasonal mean wherever at least one non-missing value existed. If an athlete had no
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observed data in a given column, I substituted the league-wide mean. Following common
practice in sports workload analysis (see Benson et al., 2021), I used each player’s seasonal
mean wherever a non-missing value existed; if none existed, I substituted the league-wide
mean. For missing age values, I first looked for if the player had any previous existing age
in other years, and attempted to use the difference in seasons as either an addition or
subtraction to calculate a missing age value. If the player didn’t have any preexisting age
values in the dataset, I used the overall mean.

3. Streak, recency, and workload indicators (median imputation).
Variables that are inherently skewed—such as streak magnitudes (Last high-minute streak
length, Avg. high-minute streak (last 20), etc.), workload counts (High-minute games in
last 20, Avg. minutes (last 5 games)), and recency measures (Days since last injury)—were
imputed with the within-player median to mitigate the influence of outliers. This approach
is described as appropriate for skewed data (Mohammed et al., 2021). As with the mean
strategy above, I fell back on the overall-sample median only when a player was missing

all previous values.

3.4 Final Dataset

The final dataset contains 21 total variables, where each observation is identified by a
unique game-player. See Table 1 for details. The data spans from 2012 to 2023 and includes 8253
unique games and 1211 unique players. On average, players played 20.14 minutes per game (SD
= 12.60), with an injury rate of 0.03 (SD = 0.17). Players typically had around 16 games of rest

between games (SD= 56.34), with a total of 9151 games where a player played on a back-to-back
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205 (one day of rest). While the dataset’s mean rest time is 16 days, this value is skewed by the
206  significant number of low-minute or inactive players (as seen by the median of 4). The typical

207  number of days separating a player and his last injury is 254.49 (SD = 312.23).

208

209 Table 1: Descriptive Statistics
variable mean # sd # min # median # max
Identifiers and Context
Gameid 22,627,242.79 4,222,721.43  21,100,001.00 21,701,180.50 52,100,131.00
Season 2,017.96 3.15 2,012.00 2,018.00 2,023.00
Injury Outcomes and History
Rest 16.37 56.34 1.00 4.00 2,540.00
Days since last injury 254.49 312.23 1.00 113.00 3,105.00
Injuries so far this season 0.70 1.21 0.00 0.00 14.00
Total career injuries before today 5.70 5.87 0.00 4.00 48.00
Injury next game (yes / no) 0.03 0.17 0.00 0.00 1.00
Minutes and Workload Variables
Minutes Played 20.14 12.60 0.00 21.68 60.12
Close games in last 20 5.29 2.13 0.00 5.00 15.00
Avg. high minute streak (last 20) 0.89 1.79 0.00 0.15 27.50
High minute games in last 20 5.30 5.80 0.00 3.00 20.00
Avg. minutes (last 5 games) 20.25 10.55 0.00 21.30 45.66
Change in minutes since last game -0.06 10.09 -48.00 0.00 48.62
Player Characteristics
Age 27.57 4.18 19.00 27.00 43.00
Player height (cm) 200.40 8.74 165.10 200.66 228.60
Player weight (kg) 100.11 11.55 60.33 99.79 141.07
Game Statistics (Previous Season Averages)
Prev. season rebounds / game average 4.13 243 0.00 3.58 17.42
Prev. season 3-point attempts / game average 2.57 2.12 0.00 2.32 13.18
Prev. season free-throw attempts / game average 2.14 1.75 0.00 1.63 11.98
Player Salary
Salary 7,786,954.00 8,720,888.00 5,767.00 4,160,000.00 52,938,707.00

210 Games missed from injury (within same season) 5.70 6.77 0.00 4.00 79.00
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4. Method

I modeled injury risk using a Random Forest classifier (RF) coupled with 5-fold cross-
validation. The RF method was preferred for three reasons. First, it can predict injuries with a non-
linear interaction that is highly dependent on multiple complex factors, such as workloads, player
playstyle tendencies from previous season averages, and player attributes. Second, because each
tree only considers a random subset of variables in each split, the model helps lessen the impact
of highly correlated variables and reduces over-fitting. Third, the model allows for easy post-hoc
interpretability. More specifically, the algorithm enables the computation of Gini-based
importance scores allowing us to identify pertinent metrics.

Model assessment and parameter tuning were done using 5-fold cross-validation. The data
was stratified into five subsets, with four out of the five subsets being used as training data, and
one out of five subsets used as testing data. I repeated this five times for five different subset
combinations and checked confusion matrix results to ensure that my results are robust and
generalize to different test samples.

The Random Forest Model is a machine learning model that makes predictions by
combining many small decision trees. Each tree looks at a random portion of the data and different
player statistics, adopting its own pattern of when injuries occur. The model then averages all the
tree's predictions to make one overall injury probability. This approach is useful as it helps capture

complex patterns while avoiding overfitting to any single part of the data.



231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

13

This study implements the RF model using the “randomForest” package in R.
Hyperparameters within the function include the following: ntree, mtry, nodesize, maxnodes,
replace, sampsize, and classwt among others.

The number of trees (ntree) was fixed at 500, consistent with the default in R’s
randomForest package. As noted by Breiman (2001), the generalization error of a random forest
converges as the number of trees increases, and Liaw & Wiener (2002) observe that the out-of-
bag error stabilises once ‘enough trees’ are grown. Thus, 500 trees was chosen because it provides
model stability without excessive computational cost.

The mtry parameter controls the amount of variables that are considered at each split. A
smaller value increases the diversity among the trees but weakens the individual trees, while a
larger value reduces bias but risks high correlation. In section 5.1, mtry is fitted by maximizing
the area under the ROC curve.

I chose the default values (nodesize= 1; maxnodes= NULL) for the trees, allowing them to
be grown to full depth. This setting minimizes bias and allows trees within the RF model to capture
complex interactions. Higher nodesize or lower maxnodes values would have restricted tree depth,
leading to higher bias but lower variance among the trees.

Bootstrap sampling parameters were also set to their default values (replace = TRUE; samp
size = n). This allows for each tree in the RF to be trained on a more diverse dataset created by
random sampling with replacement. The result lowers variance and reduces overfitting once the
trees are averaged.

Class weights in the Random Forest model were set to the default value (classwt = NULL),
which weighed both injuries and non-injuries as equal. While class weighting is useful in

addressing imbalanced outcomes by penalizing misclassification of injuries more heavily, I chose
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to handle imbalance through threshold tuning. Doing this allowed me to directly control the trade-
off between false-positives and false-negatives to reflect the practical costs of missed injuries vs
false alarms.

Threshold is the final classification layer of the RF model. Prior to this layer, my RF model
generates a logit (or “probability”) of getting injured in the next game. The threshold converts this
logit into a binary classification (“yes/no””). Lower thresholds (close to 0) mean that most logits
will be classified as “yes”, while higher thresholds (close to 1) classify most logits as “no”. Section

5.2 details the process for which the threshold is fitted.

5. Results

The goal of this study is to develop a machine learning framework that predicts next-game
injury risk using publicly available data, then translate these probabilities into expected financial
costs. To accomplish this, the result section follows four steps: (1) tune and validate the model to
make sure it works beyond chance, (2) pick a decision threshold that balances the false positives
and false negatives based on cost, (3) show the out-of-sample performance of the model at that
optimal threshold, (4) identify which features matter most for predicting injuries, and (5) use injury

probabilities to generate an understanding of financial risk.

5.1 Parameter Tuning

To tune the random forest’s mtry hyperparameter, I fixed mtry to values between 1 and 16

(the total number of variables that are used for prediction) and computed ROC points across a grid
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of decision thresholds for each fold of a 5-fold cross-validation. The thresholds were 0.9, 0.5, 0.15,
0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.007, 0.005, 0.003, and 0.001. As the
threshold decreases toward 0, both the true-positive rate (TPR) and false-positive rate (FPR)
increase, ultimately tracing out the ROC relationship (see Figure 2A).

For each fold, I recorded FPR and TPR at every threshold, then averaged these across the
five-folds to obtain an average ROC curve (Figure 2A, black line). I included a 45° reference line
to represent random chance. Because the average ROC curve sits well above this chance line, the
model performs better than random classification of injuries.

To identify the optimal mtry value for the random forest model, I approximated the area
under the average ROC curve (AUC) for every value of mtry and selected the value that produced
the highest value (Figure 2B, red line). I estimated the AUC by summing the true positive rates
(TPR) across all thresholds, as the AUC represents the model’s overall ability to distinguish
between injured and non-injured players. A higher AUC indicates stronger class separation
(injuries from non-injuries). Among all possible configurations, the model with mtry = 16 achieved
the highest approximate AUC of 8.087, slightly outperforming other values of mtry (2nd best mtry

=14, AUC = 8.078; 3rd best mtry = 13, AUC = 8.077).

5.2 Threshold Testing

To determine which threshold minimizes cost, I first define a cost ratio between false
negatives and false positives. Then, I plot an estimated cost score based on three cost ratios (0.5,
1, 1.5) in three different colors against different thresholds from 0 to 0.9 (see Figure 2C). Cost
ratio, c, is defined as

¢ =cost of a FN (false negative) / cost of a FP (false positive).
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When ¢ < 1, false negatives are being weighed as less than false positives. Ata ¢ =1, false
negatives and false positives are viewed equally, while ¢ > 1 implies that a false negative is viewed
as more costly than a false positive. The true cost ratio will vary by team, player, and contract.
Therefore, I report results at ¢ = 1, as a neutral expected-value baseline that does not include
unverified cost-related assumptions, but my methodology is robust to any cost ratio. For a cost

ratio of 1, the threshold that minimizes cost is 0.02 (minimum of green line in Figure 2C).

Figure 2: Model performance evaluation for the Random Forest classifier
(A) ROC curves averaged across folds for mtry = 16, (B) area under the ROC (AROC) across mtry

values, and (C) cost—threshold curves illustrating false-negative/false-positive trade-offs.
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In Table 2, I present the confusion matrix for my model. At a conservative 2% threshold, I

predicted 69% of true, out-of-sample, injuries while correctly ruling out 63% of healthy games. In

practice, this means I can generate early warnings for roughly two thirds of forthcoming injuries,

giving teams a tool to minimize injury odds.

Table 2. Confusion matrix

Means and standard errors (in parentheses) across 5 folds. Accuracy and proportion correct in grey.

Actual 321
322
0 1
323
0 13577.20 182.60 324
Predicted
(41.32) (8.89) 325
326
1 8160.00 400.20
327
(47.13) (7.55)
328
329
330

331




332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

18

After training the Random Forest model, I examined which variables most strongly
influenced injury prediction through their feature importance score. A feature importance score
measures how much a variable contributes to reducing impurity or how well a variable helps the
model separate injured from non-injured players. High scores mean the feature was more useful
for making cleaner splits between injuries vs non-injuries. Feature importance scores (Gini gain)
ranked the following predictors as the most important predictors, in the following order: change
in minutes since last game, average minutes in the last 5 games, days since last injury, and rest.
The following variables were the least predictive of injury: age, number of high minutes played
(games above 30 minutes played) in the last 20 games, player height, and number of injuries
previously in the season.

The results are intuitive: players who have a sudden change in minutes compared to their
last game, have suffered an injury recently, have a recency in the last 5 games of playing a
significant amount of time, and aren’t well rested have a higher injury risk. Specifically, players
with more rest have significantly lower injury odds compared to those on 0-5 days of rest. Most
injuries tend to happen on short amounts of rest, while long rests minimize injury chances, as
expected. Contrary to my expectations, physical attributes, like age and a player’s height, were not
particularly useful to the model. This is inconsistent with previous findings such as Lu et al. (2022),
where age was a driving factor in the predictions.

For days since the player’s last injury, I find that players who re-injure tend to have had
less time since their previous injury. I find that for a player’s change in minutes since their previous
game, a small increase in minutes is a mild risk amplifier, while extreme shifts either more or less
are red flags. For the variable encoding the average number of minutes played in the last five

games for a player, I found that the majority of injuries happened above the 20 minute zone, and
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injury risk slowly increased until it peaked at around 30 minutes. Like the rest of the top 4
predictors, injuries also happen frequently under 20 minutes, which suggests that Avg. minutes
(last 5 games) is most powerful in combination with other predictors, and not a standalone

predictor.

Figure 3: Feature importance score for variables within the model

Change in minutes since last game
Avg. minutes (last 5 games)
Days since last injury

rest

Prev. season personal fouls / game average
Avg. high minute streak (last 20)
Prev. season free-throw attempts / game average
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5.4 Expected Cost and Salary Analysis

While previous studies have looked at forecasting injury probabilities using box-score

related data, they have all stopped at predicting who is likely to get injured, without examining the
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financial consequences of those injuries. Utilizing salaries, and the predicted probabilities of

injuries generated in the Random Forest Model, I construct a method for calculating expected cost:

E[Cost] = P(injury) X (salary ~ 82) x (average duration of injury)

Here P(injury) is the model’s predicted probability of an injury, and salary/82 represents
the player’s per game salary, assuming an 82 game regular season. The average duration of injury
is calculated as the mean number of games typically missed per injury. This calculation ultimately
allows for a per-game estimation of a player’s financial risk on the team. Figure 4A shows an
example team (New Orleans, 2018), where each player’s expected injury cost fluctuates
throughout the season based on model predictions.

To complement this estimate, I calculate the actual financial cost of injury by multiplying
the number of games missed after each injury by the player’s per-game salary. This allows for a
direct comparison between the expected and realized financial losses. Expected cost values were
derived from the model’s predicted probability of injury for each player, multiplied by their per-
game salary and the average duration of injury. Figure 4B plots expected versus actual financial
costs, showing a high degree of correlation between the model’s expected cost and real financial
outcomes (r = 0.955). Figure 4C shows the aggregated total expected costs by team and season.
Expected cost has gone up throughout the years as a result of inflationary changes of salary. All
together, these analyses demonstrate how injury prediction models can be used to estimate

financial risk to a team.
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388
389 Figure 4: Expected and realized injury-related financial costs
390 (A) Player-level expected cost heatmap for New Orleans (2018), (B) correlation between expected

391  and actual team-level financial losses, and (C) league-wide expected injury costs over time (2012—

392 2022).
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5.5 League-Wide Injury Cost Simulations

To explore the potential value of rest, I simulated a scenario in which high-risk players
were rested before their next games. In this scenario, I selected a threshold that would be
considered risky, and determined the days between the player's current game and the next team
game that he could participate in (within the season). To demonstrate how to calculate league-wide
costs, I selected a risky threshold at 0.10 and carried out cost-analysis. This selection is arbitrary,
but it allows teams to take on a relatively high level of injury risk tolerance.

Building on this, I simulated the effect of resting players exceeding the threshold, rather
than letting them play the next game. Specifically, I increased each player’s rest and days since
last injury variables by the number of days between the current and next game.

I then applied the previously developed Random Forest model using these updated
variables to generate new injury probabilities. Using these revised probabilities, I recalculated each
player’s expected injury cost. Comparing the new expected costs to my original estimates allowed
me to quantify the financial effect of resting high-risk players for one game.

Table 2 presents the financial outcomes of this simulation. Across multiple seasons, I show
original estimates (Expected Cost Before), new estimates with simulated rest (Expected Cost
Updated), and the total savings from simulated rest across all teams in the NBA (League Wide
Savings). Positive League Wide Savings indicates cost savings from avoided injuries, while
negative League Wide Savings would indicate losses due to unnecessary rest. Note that League

Wide Savings is positive for every season between 2012 and 2023, and achieves a maximum of



427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

25

approximately $5.7M in 2021. This estimate is also conservative, as 9,551 observations in the
dataset lack salary information, meaning true savings are likely even higher.

This framework can be extended to evaluate the effects of giving players multiple games
of rest, allowing for estimation of optimal rest durations. Alternatively, it can be coupled with
additional metrics related to the contribution of a player to each game, allowing teams to weigh

the cost-benefit of resting a high-injury-risk player.

Table 2: Expected financial savings of simulated rest

Season # FExpected Cost Before ($) | # FExpected Cost Updated (§) | # League Wide Savings ($)
2012 53,084,023.00 52,290.431.00 793,592.00
2013 58,416,697.00 57,701,799.00 714,898.00
2014 69,726,235.00 68,802,051.00 924,184.00
2015 §9,525,765.00 88,680,847.00 844,918.00
2016 91,375,624.00 90,179,228.00 1,196,396.00
2017 122,890,987.00 122,032,816.00 858,171.00
2018 171,450,351.00 170,157,843.00 1,292 508.00
2019 267,101,203.00 264,294,772.00 2,806,431.00
2020 334,354,611.00 330,440,266.00 3,914,345.00
2021 373,074,240.00 367,327,041.00 5,747,199.00
2022 471,129.705.00 468,381,953.00 2,747,752.00
2023 181.735.706.00 180.382.552.00 1.353.154.00

Discussion

This study set out to answer a practical question for NBA front offices: Can a machine
learning model that combines publicly available data be used to not only forecast player injuries,
but also to estimate their financial impact?

To answer this, I merged five public datasets (injury logs 2010-2022, game-level box
scores with minutes played, player salary details by season, season-level box score and player

attribute descriptions, and team-level box scores per game) into a single game, individual player
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based dataset. I engineered and derived 16 workload and recency metrics, treated missing values,
and trained a Random Forest classifier for predicting injuries. To optimize the model, I utilized 5-
fold cross-validation to guide hyper-parameter tuning (mtry testing 1-16, threshold testing) and
tested the model out-of-sample for performance estimation.

My results show that simple box score data can predict injuries with above-chance
accuracy. At a 2% threshold, the model predicted around 69% of true injuries out-of-sample, while
ruling out 62% of healthy games, suggesting that my model can offer teams early warnings for
most upcoming injuries well above chance. Beyond predictive accuracy, the integration of
financial risk modeling introduces a novel extension of injury forecasting. Across seasons,
expected injury-related costs showed steady inflation from $53.1M in 2012 to $471.1M in 2022,
closely aligning with the model’s updated estimates after rest simulation. On average, resting
players above the injury-risk threshold produced league-wide savings each year, peaking at
$5.75M in 2021 (Table 2). By translating injury probabilities into salary-adjusted costs, my

analysis offers teams a quantitative framework for managing both player health and financial cost.

Feature Interpretation

Because the dataset only had a small proportion of injuries, the accuracy of the model
exceeded my expectations. Since I decided on a lower injury threshold (0.02), I accepted a high
number of false positives in exchange for identifying more true injuries. The average across five-
folds yielded a 63% specificity (TN/(TN+FP)) and 69% sensitivity (TP/(TP+FN)). The top
features in my model illustrate that changes in player workload and recovery dynamics are key

drivers of injury likelihood. Any spikes in last game minute change are red flags for injury
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likelihood. The amount of days since the players’ last injury is also a valuable metric, as if the time
is shorter, there may be a chance that the player didn’t fully recover from his previous injury.
Average minutes of a players’ last 5 games gives a representation of how much time a player has
been playing recently (around the past two weeks). Rest is a powerful metric as it totals the number

of days a player has in between games to potentially recover their body.

Practical Implications

My research is most impactful for NBA organizations. For load-management staff the
model provides a flag for early-warnings toward injuries. Rather than simply proving the fact that
longer rest lowers injury risk, the model quantifies when and for whom rest produces the greatest
economic return. In particular, rest emerged as one of the strongest predictors in the feature-
importance analysis, and the financial simulation demonstrated that players flagged as high-risk
who were strategically rested generated expected savings for teams. For example, given the sheer
amount of money allocated to star players, the expected savings from model-guided rest decisions
remained positive throughout every season.

Future research can extend this framework by refining the optimal amount of days to look
at alternative scenarios for player rest, and determining a truly optimal cost ratio between false
positives and false negatives. By integrating salary and injury prediction, my research moves

beyond just injury prediction, and gives outlets into what can be done with injury probabilities.

Limitations
There are three main limitations to my findings. First, when I decided to use previous

season statistics as features in my model, I sacrificed 16% (22631/140879) of total rows of the
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final data. However, I decided that it was a reasonable compromise because previous season
statistics such as rebounds and free-throw attempts give insight into certain players’ physical
playstyle. Especially with free-throw attempts, a player getting fouled is something that could
greatly increase injury odds. Second, one of my engineered predictors (number of close games in
the last 20 games) rely on end of game point differentials which is a simplification from the NBA’s
definition of close games. Additionally, throughout the injury dataset, the third most frequent type
of injury is “Placed on IL” with no other description. With this description, I am unable to
determine if “Placed on IL” is something that is an injury that could be predicted or something
else like being placed on the IL for personal reasons or NBA health and safety protocols.
Throughout my study, I will be treating “Placed on IL” as a predictable injury, which may increase
the amount of injuries in the dataset. Furthermore, I do not consider illness and infections as
injuries. This means the model treats many instances where players log big minutes, get sick, and
miss the next game as non-injuries (0). The model may learn that heavy minutes are less risky than
they really are if there are significant amounts of high minute trends that lead to sickness. Finally
I acknowledge that the salary analysis process may be an oversimplification of real-world
scenarios. For example, I don’t take into account the money lost from rest, and I assume that salary
is evenly distributed across an 82-game season, which may be inaccurate considering NBA
playoffs. Additionally, variables were not reset at the end of each season and were continuously

counted across the end and start of seasons.

Conclusion
This research demonstrates that publicly available data and machine-learning methods can
meaningfully forecast NBA injury risk and, at the same time, quantify its financial consequences.

By combining injury-probability generated from a machine learning model with salary-based cost
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estimates, the study introduces a new framework for NBA teams that connect topics in sports
medicine and health analytics to economic decision making in basketball. While this study doesn’t
dive into an optimization system, the approach demonstrates how predictive models can inform
load-management strategy while reducing expected salary loss. Future work may work on
expanding this framework by optimizing rest-time, deciding on a better “risk-threshold”, or taking
into account the financial cost of resting players. Ultimately, injury forecasting offers front offices

a simple, yet effective tool to preserve both player health and economic success.
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589  Supplementary

S1. Top 5 Most Frequent Injuries by Severity
Minor

placed on IL with illness

placed on IL with sore left knee
placed on IL with sore right knee
placed on IL for rest

placed on IL with sore lower back

Moderate

placed on IL with sprained left ankle
placed on IL with sprained right ankle
placed on IL with strained left hamstring
placed on IL with bruised left knee
placed on IL with strained left calf

Injury Detail

Severe

placed on IL (out for season)

placed on IL with sprained right ankle (out for season)
placed on IL with sprained left ankle (out for season)
placed on IL with sprained MCL in left knee

placed on IL with fractured right hand

° mmmmy .ll
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Frequency

590 To get an understanding of the frequency and different types of injury that occur in my
591  dataset, I construct three severity tiers to categorize injuries for better understanding: severe,
592  moderate, and minor. Frequency of injuries in my dataset can be seen in Graph A. In graph B, the
593  top five most frequent injuries are displayed by severity. In my dataset, the highest frequency in
594  the severe injury category were injuries that sidelined players for the season but with no further
595  injury detail. The second most common was a sprained right ankle that ruled players out for the
596  season, followed by a sprained left ankle of the respective nature. For the moderate tier, regular
597  sprained left and right ankles were of highest frequency. For minor injuries, sore left and right
598  knees were the most frequent. It is also noticeable that there are much more minor and moderate

599  injuries compared to severe ones.



