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Abstract

Prior academic research in Formula One, most notably Mühlbauer (2010), con-
cluded that starting grid positions were the strongest determinants of race outcomes
while only examining the top eight finishers (fewer than 40%) of the competitors
over a shortened sample of 4 seasons (2006–2009). This truncated sample approach
limited the generalizability of its findings and likely affected the observed rela-
tionships. This study attempts to correct these findings by using a much more
comprehensive dataset of over 7,800 driver-weekend pairings, spanning nearly two
decades of sporting activity and multiple technical eras, while including the entire
racing field. We extended the original analysis, by applying contingency coefficients,
as well as rank-order correlations and ordinal logistic regression, to quantify the
strength of association between sessions in a race weekend (practices, qualification,
starting grid, and finishing position). This extended work indicates that qualifying
performance, rather than the starting grid (often altered by post-qualification ad-
justments due to penalties), exhibits the strongest and most consistent association
with outcomes. By re-evaluating this start-finish relationship with more complete
data and transparent methods, this study corrects earlier misinterpretations and
reinforces that qualifying is the most accurate indicator of the underlying driver
and car performance across a weekend, season, and regulatory eras.

Keywords: Formula One; association; contingency coefficient; ordinal logistic asso-
ciation; replication; correction
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1 Introduction

1.1 Background

Formula One (F1) is the highest class of international auto racing within the category of
open-wheel (exposed wheels), single-seat (one occupant) formula racing cars sanctioned
by the Fédération Internationale de l’Automobile (FIA) (Fédération Internationale de
l’Automobile (FIA), 2024). As the pinnacle of motorsport, F1 incorporates the latest
advancements in all areas of science and engineering. Governed by the FIA, F1 runs
20 to 25 Grand Prix races over a calendar year, leading up to both the Driver’s and
Constructor’s World Championships. Each race weekend generally follows a structured
format of 2 practice sessions on a Friday (Practice 1 (P1) and Practice 2 (P2)) to allow
teams to collect data and refine their technical setups; a third practice session (Practice
3 (P3)), a qualifying session on Saturday (used to determine the fastest to slowest cars
to set the starting grid in a single-lap time trial), and a Grand Prix on Sunday, a race of
just over 300 km.

F1 is a sport that leads in cutting-edge technology, from engine development to aero-
dynamics to the employment of various sensors, all of which make data essential for
competitiveness. Teams analyze all sorts of race data, including telemetry, tyre degrada-
tion, weather, altitude, sector and mini-sector execution, and competitors’ performance,
to optimize their decisions regarding race strategy and execution. This immense volume
and speed of data processing required for real-time in-race decision-making exemplify
the advanced integration of state-of-the-art data science needed for modern-day sports.
From race-day tactics to season-long strategy, data-driven insights are vital for success
within the sport (Sports, 2023) This highlights the importance of capturing and maxi-
mizing every weekend variable, from practice sessions on Friday through to the Sunday
race execution itself, to find competitive advantages wherever possible.

While Formula One is a data-rich sport, teams privately analyze these relationships
(and in much greater depth) using proprietary data and telemetry collected from an array
of sensors. However, public and academic research on performance analysis in this sport
is much more limited. One of the few published studies, Mühlbauer (2010), examined
the link between qualifying and finishing positions using only the top eight starters from
the 2006 to 2009 seasons, which is less than half of the competitive field. This restricted
design limited generalizability and may have overstated the importance of starting grid
position relative to qualifying performance.

1.2 Prior Work and Motivation

The relationship between starting-grid and finishing positions in Formula One has long
been of interest to teams, analysts, and researchers. The most notable published academic
analysis (Mühlbauer (2010)) concluded that starting grid positions were the strongest
determinants of race outcomes. However, that study relied on a truncated sample; the
top eight finishers across only four seasons (2006–2009), representing roughly 40% of the
field. Such restrictions in sample design can distort statistical relationships, particularly
when grid positions themselves are influenced by post-qualifying penalties.

To test whether this earlier conclusion was an artifact of limited sampling, the present
study replicates that analysis using the same metrics before extending it to nearly two
decades of data (2006–2023) and the complete grid of competitors. We then quantify the
statistical relationships between practice, qualifying, grid, and finishing positions using
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contingency coefficients, rank correlations, and ordinal logistic regression to provide an
updated, transparent evaluation of these associations across eras and throughout the race
weekend. By addressing these shortcomings, this paper refines the empirical understand-
ing of how different race-weekend sessions evolve and relate to the final outcomes in a
Formula One Grand Prix.

1.3 Scope

Rather than constructing prediction models, an effort notable for future work as it is
lacking within the academic space, this study focuses on quantifying the statistical rela-
tionships among a race weekend’s sessions. By emphasizing the association rather than
prediction, the results aim to clarify which performance measures most accurately re-
flect underlying car and driver capability, correcting prior published interpretations and
extending the understanding across multiple technical eras.

1.4 Literature Review

Historical research within F1 has focused on the technical, physiological, and structural
factors influencing motorsport performance. Hughes (1968) reviewed the importance
of motor racing within the context of evaluating driver skill and car performance and
highlighted the significance of measurement systems. Schwaberger (1987) analyzed the
physiological demands on an F1 driver required to manage the intense forces experienced
during a race, emphasizing the high fitness levels required. Bisagni and Terletti (2008)
looked at the structural optimization of composites in F1 cars, demonstrating the critical
role of engineering in competitive performance.

Pivoting to an analysis of the relationship between the starting grid and race outcomes
has led to various studies emerging in the past 15 years. Mühlbauer (2010) provided an
early investigation of this topic, examining 70 races from 2006 to 2009. This study serves
as the inspiration for this paper while it found a strong correlation between the starting
grid and finishing positions, it has many limitations. It suffers from a small sample size,
both in drivers (the paper only examined the top 8 per race, while there are normally
20+ per race) and in seasons (just 4), all of which provide a limited scope of analysis.
Additionally, the authors fail to address that the starting grids are already established by
F1’s qualifying process, a time-trial that allows cars to determine which is the fastest in a
single lap ahead of the race; intuitively, the fastest car on a Saturday should likely be the
fastest car on a Sunday, which potentially overstates the importance of grid positions.

In addition to this keystone study, McCarthy and Rotthoff (2013) analyzed Formula
One’s 2012 season to determine whether certain starting-grid positions were more prone to
first-corner contact, which would likely negatively impact their finishing positions. Using
a probit regression model on pre-racing starting and finishing data matched with crash
reports, the authors find a non-linear relationship. Mid-grid positions, particularly those
in position 10 and the last position, had the highest probability of collision, while the
pole position and the last position faced the least risk. Their work uniquely introduced
the concept of strategic qualifying behaviour, suggesting that, under certain conditions,
drivers might intentionally avoid high-risk grid spots to maximize their race finishing
positions.

Sobrie (2020) developed a predictive modelling framework for F1 race outcomes, em-
ploying various machine learning algorithms (including Decision Trees, Random Forests,
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Adaboost, Gradient Boosting Machines, and XGBoost). They compared class-imbalance
techniques and evaluated performance using accuracy, AUC, F1, and lift metrics to pre-
dict whether a driver finishes in the top 3. Their results showed that XGBoost achieved
the highest performance and handled class imbalance the best without degrading preci-
sion. This thesis also examined model regularization and the effects of overfitting specific
to F1 race data, demonstrating how ensemble methods can capture competitive dynamics
more effectively than simpler models.

Sicoie (2022) developed a machine learning framework to predict F1 race winners and
championship standings using historical data from 2014 to 2021. Their study combined
API and web-scraped datasets enriched with weather, circuit, and driver attributes. Ap-
plying Random Forest, Gradient Boosting, and Support Vector Regression models with
cross-validation, the results showed high rank correlations between the predicted and
actual standings and identified constructor and qualifying performance as dominant pre-
dictive features. This work stands out for integrating heterogeneous race, environmental,
and driver data into a single supervised learning pipeline for season-long outcome predic-
tions.

Patil et al. (2022) analyzed five seasons of Formula One data (from 2015 to 2019) to
identify which technical and strategic factors most affect total championship points, which
are derived from final race positions. Using correlation analysis, principal component
analysis (PCA), and linear regression on 21 car and race variables, such as tyre usage,
pit stops, penalties, and laps led, they were able to reduce the dataset to four principal
components that explain 70% of the variance, which are linked to key factors such as
average pole position, tyre choice, and race completion rate to points scored. Their
results showed that the starting position and tyre strategy dominate season outcomes,
offering a dimensional reduction framework for interpreting race performance.

van Kesteren and Bergkamp (2022) advanced the field by using a Bayesian multilevel
rank-ordered logit model to separate driver skill from car performance, utilizing results
from the 2014 to 2021 seasons. Using hierarchical random effects for drivers, construc-
tors, and season-specific form, they estimated that roughly 88% of the variance in race
outcomes is attributable to constructor performance, with the remainder due to drivers.
Their approaches uniquely allow for the comparison of probabilities of drivers and teams
on an Elo-like scale and demonstrate that constructor effects dominate results while en-
abling counterfactual inference, such as how a driver would perform in a different car.

Padilla (2023) looked into whether F1 teams achieve better performance by employing
rookie or experienced drivers, using a casual-comparative qualitative analysis of race
results, salaries, and points from the 2005 to 2019 seasons. Using ANOVA and regression
analysis on driver experience groups (rookie, experienced, and veteran), the study found
that while experienced drivers score more points on average, rookies outperformed 30% of
experienced and 62% of veteran drivers at far lower costs, implying potential overpayment
to the tune of $360 million over 15 years. This study uniquely introduces a cost-per-point
efficiency metric to evaluate driver hiring decisions, rather than relying solely on raw
performance alone.

Collectively, these contributions highlight progress in Formula One analytics but also
leave unresolved questions about the fundamental relationship between qualifying, grid,
and race performance that earlier work characterized incorrectly.
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1.5 Objective and Contributions

Building on the limitations identified in Mühlbauer (2010), this study expands both the
scope and rigour of analysis to improve our understanding of performance relationships
across the entire Formula One race weekend. While earlier studies were valuable starting
points, they were heavily restricted by the small sample size of their dataset selection
(i.e., top eight starters only, four seasons, etc.) and by a narrow focus on the starting
grid, which is already self-sorted by the results of the prior day’s qualifying session.

This work contributes to this domain in three main ways:

1. Firstly, it replicates the prior work to demonstrate how this truncation of the sample
influences the statistical associations between racing sessions.

2. Secondly, it extends the analysis and dataset to include all competitors on the track
over a span of two decades, enabling a longitudinal view of how session relationships
have evolved under changing technical and sporting regulations.

3. Finally, it applies multiple complementary approaches to contingency coefficients,
such as rank-order correlations and ordinal logistic regression, to further quantify
the relative association of weekend sessions with the final race results.

Together, these contributions correct earlier misinterpretations and offer a transpar-
ent, data-driven foundation for future research on race performance dynamics, providing
an empirical benchmark for future studies of race-weekend performance relationships.

2 Materials and Methods

2.1 Analytical Framework

This study follows a two-stage approach. First, we replicate the work that was previously
conducted by Mühlbauer (2010) using the same variables, seasons (2006 to 2009 inclu-
sive), and the truncated top-eight starter sample to verify their reported associations and
ensure that we are aligned in our approach. Second, we extend this analysis of the full grid
of competitors, including nearly two decades of races (2006 through 2023 inclusive), and
evaluate whether these relationships hold under complete data and modern conditions.
Throughout, the focus is on quantifying associations among race-weekend sessions, prac-
tice, qualifying, starting grid, and finishing positions, rather than constructing predictive
or forecasting models.

Beyond expanding the temporal and sample scope of prior work, this study also deep-
ens the analytical framework. Whereas Mühlbauer (2010) relied solely on the contingency
coefficient (C) to describe the nominal association between the starting grid and finish-
ing position, we introduce additional statistics that capture both nominal and ordinal
relationships. Specifically, we compute:

• the Relative Frequency (RF) statistic to evaluate session-to-session positional
consistency;

• Spearman’s rank correlation coefficient (ρ) measures the monotonic associa-
tion between ranked sessions and race results; and
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• an Ordinal Logistic Regression (OLR) model to compare standardized associ-
ation strengths across sessions.

Together, these measures provide a multi-level assessment of how practice, qualifying,
and grid results relate to race outcomes while maintaining methodological continuity with
the original publication.

2.2 Data Preparation and Cleaning

Data for this study was collected by scraping official race results from the Formula 1
website (http://www.Formula1.com). The dataset includes every Grand Prix from 2006
through 2023 (as scraping was completed before the end of the 2024 season). In total,
more than 400 races were captured, yielding a comprehensive record of driver and team
performance.

Exclusions and data completeness. To ensure comparability across events, several
types of weekends were excluded. Races with incomplete or disrupted session data were
removed; for example, the 2023 Emilia Romagna Grand Prix (cancelled due to flooding)
and the 2017 Chinese Grand Prix (practice sessions cancelled due to fog). Any weekend
(driver specific) where a single chassis was driven by multiple drivers, such as short-term
illness substitutions or rookie test opportunities, was also excluded.

Beginning in 2021, Formula 1 introduced ”Sprint” weekends featuring a short Sat-
urday race in place of the standard three-practice format; these were excluded because
their condensed schedule and altered sequence of sessions make them non-comparable to
traditional weekends. Key variables include:

• Season: year of the race.

• GP: name of the Grand Prix.

• gp code: unique identifier for the race weekend.

• No: driver’s number.

• Driver: driver’s name.

• Car: team or constructor represented by the driver.

• Gap: time gap to the session leader.

• Laps: number of laps completed in the session.

• Pos: position ranking within the session.

• Time: best lap time achieved.

• Qualifying Time: best time across qualifying stages.

• Race Start Position: grid position after penalties or disqualifications.

• Race Finish Position: final classified race result.

• Status: completion status or DNF reason from FIA timing sheets.

6

http://www.Formula1.com


• Points: points awarded for the finishing position.

A snapshot of representative rows is provided in Table 1.

Season GP Driver Car
Pos

(Qualy)
Race
Start

Race
Finish

2006 Australia M. Schumacher Ferrari 11 10 NC
2006 Australia F. Massa Ferrari 16 15 NC
2006 Australia R. Barrichello Honda 17 16 7
2006 Australia J. Button Honda 1 1 10
2006 Australia A. Davidson Honda NaN NaN NaN

Table 1: Sample of the dataset showing key columns and entries.

Data cleaning and structure. The remaining events were combined into a single
analytic dataset and pivoted so that each row represented one complete driver–weekend
record. Any event in which a driver failed to participate in all three practice sessions
due to weather, illness, or driver changes (e.g., United States: 2015 rain; Germany: 2020
fog; Russia: 2021 rain) was excluded. These criteria kept the driver–car pairing constant
and preserved full three-day weekend data for every observation. Non-finishers (DNFs)
were retained and coded using their classified finishing positions, as listed in FIA results,
preserving the race order at the time of retirement. Penalties affecting grid positions were
maintained, as they represent the official starting order used in each Grand Prix. Each
observation, therefore, included all session results (Practices 1–3, Qualifying, Race) and
related metadata.

Final dataset. The cleaned dataset comprises over 7,800 driver–race observations, each
representing a single driver–car pairing across a full weekend. The full dataset used for
this analysis is available upon request. By standardizing inclusion criteria and weekend
structure, the dataset enables a consistent comparison of performance evolution from
practice through qualifying to race results.

2.3 Experiment, Analysis, and Evaluation Methods

Overview and Analytical Approach. As described in section 1.4, this study vali-
dates the work done by Mühlbauer (Mühlbauer, 2010) and adds to their methodology
and results. The relationship between the starting grid position and the finishing position
was analyzed using the contingency coefficient (C), as in the original work. The contin-
gency coefficient quantifies the strength of association between two nominal variables by
adjusting the chi-squared statistic for sample size (Agresti, 2010; Goodman and Kruskal,
1954).

Contingency Coefficient (C). For a k× k table of observed counts Oij and expected
counts Eij, the coefficient is defined as:

C =

√
χ2

χ2 + n
, where χ2 =

k∑
i=1

k∑
j=1

(Oij − Eij)
2

Eij

, (1)
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and n is the total number of observations. Values of C range from 0 (no association)
to a theoretical maximum of less than 1, which depends on k.

Interpretation and Rationale. The contingency coefficient C is derived directly from
the chi-squared (χ2) test of independence, which evaluates whether two categorical vari-
ables are statistically associated. In our work, χ2 measures the deviation of the observed
cell count in the position-position contingency table from those expected under indepen-
dence, and C rescales this statistic by the sample size (n) to yield a bounded measure of
association. This formulation of C ensures that it remains interpretable across datasets
of different sizes; values near 0 indicate little association between the session and race
outcomes, while values approaching 1 indicate a stronger dependence. Unlike χ2, C is
descriptive rather than inferential and is not used here for hypothesis testing; rather,
it is used as a comparative measure of association strength across seasons and sessions.
This method is retained to ensure methodological continuity with the prior study. C is
used as it was specifically designed to measure the strength of the association between
two nominal variables (e.g., comparing starting position and finishing position) and is
well suited for comparing categorical variables. By using C, the original authors were
able to account for the association between these two variables with a limited number of
categories.

Relative Frequency (Rel Freq) Statistic. Following Mühlbauer (2010), we also
compute the Relative Frequency (RF) statistic to capture the probability that a driver’s
rank in one session equals their rank in another. Formally (Sidney, 1957):

RF =
1

k

k∑
r=1

Pr(Finish = r | Session = r), (2)

where k is the number of classified finishing positions. Higher values indicate greater
consistency between session and race rankings.

Rank-Order Correlation (Spearman’s ρ). We also included an additional metric
in our analysis with the introduction of Spearman’s ρ aimed at measuring rank-order
correlations within the practice sessions. While C captures the strength of nominal as-
sociations, Spearman’s ρ provides an alternative by assessing monotonic relationships
between ranked variables. Spearman’s ρ was calculated between each session’s position
ranks (e.g., Practice 1, Practice 2, Practice 3, qualifying, and starting grid placements)
and the final race finishing positions to assess the rank-order consistency across all phases
of a Grand Prix weekend. This produced one correlation per session-finish pair for each
season, with the summarized results presented in Table 2 alongside their corresponding
C and Rel. Frequency statistics. Observations containing missing session data (as de-
scribed in Section 2.2) were excluded listwise to ensure that only complete driver-weekend
combinations were included in the correlation analysis. This combination of nominal and
ordinal association metrics allows for a consistent comparison of strength across different
types of relationships observed within the dataset and provides us with another perspec-
tive to understand the trends within the sport.

Replication of Prior Study. Replicating Mühlbauer (2010)’s method, we first limited
the analysis to the 2006 to 2009 seasons (inclusive), focusing on the top 8 positions in each
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race. This allowed us to validate their findings and create a baseline from which we can
further explore the other sessions in a Grand Prix weekend, as well as fully understand the
effectiveness of their approach. The replication followed the same inclusion criteria, using
only the top eight finishers per Grand Prix, and computing contingency coefficients and
relative frequency values between the starting grid and finishing positions for each race.
Missing drivers (DNF or unclassified) were still excluded from the dataset (as described
in Section 2.2) to preserve a consistent k × k structure, ensuring direct comparability
with the original methodology and results.

Extended Dataset and Seasonal Analysis. The next step we took was to fully
understand the impact of the race weekend evolution and to expand upon the initial
work. To ensure consistency across races, we included the full dataset to ensure that all
starting and finishing positions from each race were reviewed (most races consist of 20
drivers in this era). This approach ensures that all races include the full competitive field
(a limitation noted in prior work). We also examined the years from 2010 to 2023, electing
to start in 2010, as this season saw major technical regulation changes, as well as the
introduction of the current points system. For the extended analysis, we computed the
same association measures separately for each season and then reported both annual and
pooled means to account for within-season variability. Each Grand Prix contributed one
observation per driver, yielding approximately 7,800 driver–race instances in total. This
approach ensured consistent weighting across seasons, despite variations in the number
of events per year.

Building on the expanded dataset, we analyzed the relationship between the starting
grid and finishing results, as well as the results of each practice session (P1, P2, and
P3), and the qualifying results, to understand the statistical reliability of these sessions.
Session results (P1, P2, P3, qualifying, and race) were aligned chronologically within
each Grand Prix and merged by driver name and unique weekend code. Only drivers
with valid entries for all sessions were retained to ensure consistent pairwise comparisons
between session and race results. This alignment preserved the temporal progression of
the weekend and prevented mismatched driver-session combinations. Further analyzing
these year over year trends, we can see if the strength of the relationship has changed over
time, highlighting any potential changes in the reliability of the grid or changes within
the sport.

To account for the potential variability in field strength across seasons, reflecting the
differences in car competitiveness, team dominance, and driver talent, the analysis was
conducted separately by season and aggregated only after the within-season estimates
were computed. This approach attempts to minimize bias arising from unequal compet-
itive strengths between eras and years.

Ordinal Logistic Regression (OLR) Modelling. In our final step within this work,
we employed an Ordinal Logistic Regression (OLR) model to quantify the relationship
between practice and qualifying sessions with the final race performance The predictor
variables (xP1, xP2, xP3, xQ, xG) were coded as integer rank positions (i.e, 1 = best, 2
= second best, 3 = third best, etc), preserving their ordinal nature. The dependent
variable for the OLR Y represents the driver’s final classified finishing position at the end
of the race (also expressed as an ordered integer) No standardization or transformation
was applied, as OLR estimates relationships based on the rank ordering rather than
numerical distances between categories.
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The ordinal logistic (proportional-odds) model expresses the cumulative log-odds of
finishing position Y at or above a given threshold j (McCullagh, 1980; UCLA Statistical
Consulting Group, nd; Singh, 2016) as:

log

[
Pr(Y ≤ j)

Pr(Y > j)

]
= αj + βP1xP1 + βP2xP2 + βP3xP3 + βQxQ + βGxG, (3)

where xP1, xP2, xP3 are practice positions, xQ is the qualifying position, and xG is
the grid position. The coefficients beta were standardized to enable a comparison of
their relative association strengths among GP sessions. The resulting coefficients are
interpreted as comparative measures of association strength rather than as predictive
weights that align with the descriptive objectives of this study. This method is well suited
for our target variable (race finishing position), which is ordinal with a natural ranking
but lacks equal spacing between categories. Unlike linear regression, which assumes
continuous and interval-scaled outcomes, OLRmodels the cumulative log-odds of finishing
position thresholds, assuming proportional effects of predictors across outcome levels.
This structure, known as the promotional-odds model, is appropriate for motorsport
results, where the finishing ranks are ordered but position gaps may vary (i.e., 1st and 2nd
finishing 3 seconds apart vs 30 seconds) due to incident-driven dynamics, race strategy,
or other external factors.

Model Implementation and Robustness Checks. The ordered logit model was
implemented using the OrderedModel class in statsmodels (distribution = logit) and
estimated via maximum likelihood. The dependent variable represents each driver’s final
classified finishing position, while the predictors include the three practice session ranks
(P1, P2, P3), the qualifying rank, and, where relevant, the starting grid position. All
predictors were coded as integer ranks (i.e., 1 = best, 20 = worst) and entered without
transformation to preserve their ordinal interpretation. This cumulative logit framework
enables interpretable estimation of how each session contributes to a driver’s likelihood
of achieving a higher finishing position (UCLA Statistical Consulting Group, nd; Singh,
2016).

To ensure the robustness of the OLR modelling on this data, we conducted a mul-
ticollinearity check (e.g., variance inflation factors) to ensure variables were not overly
correlated, standardized regression coefficients (β values) to assess the relative impor-
tance of each race session, a model fit evaluation (McFadden’s R2) to understand the
explanation of variance in race finishing positions, and significance testing (p-values) to
determine which factors had a meaningful impact on race outcomes. By using OLR, we
aim to provide a much deeper understanding of how the different phases of an F1 week-
end contribute to final race performance. This allows us to assess the strengths of these
relationships and provide further statistical insight into weekend dynamics that can be
applied within the sport. All modelling steps were evaluated for robustness using multi-
collinearity diagnostics (variance inflation factors) and significance testing. The analyses
are strictly descriptive in scope, aiming to quantify relative association strengths among
race-weekend sessions rather than to forecast future race results. All analysis was con-
ducted in Python 3.12 using Pandas, statsmodel and Matplotlib in Python Notebooks.
The combination of replication, expanded metrics, and regression modelling ensures a
comprehensive evaluation of the relationship between race weekend variables and final
results.
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3 Results

3.1 Replication of Original Work (2006-2009, Top Eight)

We first replicated the original analysis of Mühlbauer (2010) using the same sample re-
strictions: the 2006–2009 seasons and the top eight finishers in each race. This replication
produces comparable results (C = 0.628, Spearman’s ρ = 0.589, p < 0.001), confirming
the previously reported association between starting and finishing positions. These results
validate the original calculations but also demonstrate the effect of sample truncation:
when extended to include all 20 drivers, the association coefficients increase substantially
(C = 0.768, ρ = 0.741, p < 0.001). The relative frequency (Rel Freq) of maintaining
starting positions to the end of the race in the top 8 was 0.558 which decreases to 0.543
when the full grid is included. These highlight the sensitivity of earlier conclusions to
restricted sampling.

The results are summarized in Table 2, which outlines the contingency coefficients
(C), Spearman’s ρ values, and Relative Frequency for various rank comparisons across
the analyzed seasons and permutations.

Start End Top n Rank 1 Rank 2 C Spearman Rho Rel Freq

2006 2009 8 Race Start-
ing Pos

Race Finish
Pos

0.628 0.589 0.558

2006 2009 20 Race Start-
ing Pos

Race Finish
Pos

0.768 0.741 0.543

2010 2023 20 Race Start-
ing Pos

Race Finish
Pos

0.734 0.748 0.516

2010 2023 20 Qualification
Pos

Race Finish
Pos

0.741 0.763 0.518

2010 2023 20 P3 Position Race Finish
Pos

0.674 0.676 0.350

2010 2023 20 P2 Position Race Finish
Pos

0.664 0.674 0.324

2010 2023 20 P1 Position Race Finish
Pos

0.627 0.629 0.300

2010 2023 20 P3 Position Qualification
Pos

0.742 0.757 0.390

Table 2: Replication of Mühlbauer (2010) (2006-2009, top eight) and extended analysis including
the full grid (top 20). Values show contingency coefficients (C), Spearman’s ρ (-1 to 1), and
Relative Frequency (0-1), where higher values indicate stronger association between sessions.

3.2 Extended Association Analysis (Full Grid, 2006–2023)

Extending the analysis to the full grid of competitors and additional seasons (2010–2023)
reveals that the strength of association between starting position and final race result
remains robust, though slightly reduced compared to 2006–2009. Across this modern
period, C = 0.734 and Spearman’s ρ = 0.748 (p < 0.001), the Relative Frequency
declined modestly to 0.516. These trends likely reflect both greater parity among teams
and the impact of regulatory and strategic variability introduced after 2010.
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Post 2010, following regulatory changes in F1 (such as the removal of in-race refuelling
and the expansion of points), the correlation between starting position and race finishing
has declined. For the top 20 positions from 2010 to 2023, C was 0.734 and Spearman’s
ρ was 0.748 (p < 0.001). The Rel Freq in this period was 0.516, which suggests a small
reduction in consistency from the 2006-2009 eras.

When the qualifying position is used instead of the starting grid position, associa-
tions strengthen (C = 0.741, ρ = 0.763), confirming that qualifying offers a more direct
measure of performance unaffected by post-session penalties. The Rel Freq of all posi-
tions during this era was 0.518 continuing to reflect the critical importance of qualifying
success.

We hypothesize that qualification positions are more strongly associated with race
results compared to the initial starting grid due to the fact that the qualification pro-
cess sorts cars from the fastest to the slowest. The starting grid adjusts these results
due to the application of penalties (e.g., replacing power units, exceeding gearbox al-
locations, or infractions during practice), which gives a distorted view of the fastest to
slowest cars. This can artificially inflate slower cars, dampen faster cars, and distort the
observed predictability of starting positions. By contrast, these qualification results are
more likely to be unadjusted outcomes of outright single-lap pace and performance for
all cars and drivers under the same conditions, making them a more reliable indicator of
race outcomes. Teams are encouraged to optimize qualification setup for raw speed, un-
encumbered by strategic influences, and to have their drivers start in an optimal position
given the difficulty of passing in modern F1.

3.3 Session Level Association

The association between early weekend performance and race outcomes varies by session.
Practice 3 (the session right before qualifying) presents the strongest association with
race results (C = 0.674, ρ = 0.676, p < 0.001), followed by Practice 2 (C = 0.664,
ρ = 0.674) and Practice 1 (C = 0.627, ρ = 0.629). Relative frequencies similarly increase
from P1 (0.300) to P3 (0.350), reflecting how teams progressively optimize setups closer
to qualifying.

These results are summarized in Table 2, which outlines the contingency coefficients
(C), Spearman’s ρ, and Relative Frequency for each session comparison.

3.4 Visualizing Association Strength

Figure 1 presents a heatmap demonstrating the relationship between qualifying positions
(Pos q) and race positions (Pos r) for the 2010-2023 season. There is a strong diagonal
trend indicating that drivers starting closer to the front tend to finish towards the front
at the end of the race. This trend is supported by the data presented above in Table 2.

Interestingly, this relationship tends to break down for the lower-ranked qualifying
cars, suggesting a less consistent relationship at the back of the grid. While pole position
(first on the starting grid, usually first in qualifying but not always due to post-qualifying
penalties) overwhelmingly translates to top race finishes, we see this distribution among
the mid-field and back-markers on the grid. This is likely due to the greater susceptibility
of drivers caused by first-corner incidents, strategic constraints, overtaking challenges
related to DRS (Drag-Reduction System), and moving up in positions when cars ahead
of them do not finish due to incidents and reliability.
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Overall, this suggests that qualifying positions, being unaffected by race-day penalties,
are better indicators of race performance than starting grid positions.

Figure 1: Heatmap showing the relationship between qualifying positions (y-axis, Pos q) and
race finishing positions (x-axis, Pos r) for the 2010–2023 seasons. Darker cells represent higher
frequencies of drivers finishing in the same or nearby positions. Axes range from positions 1
(best) to 20 (worst).

3.5 Analysis by Technical Eras

When we examine F1 from the perspective of their major technical eras (as presented
in Table 3), to see how changes in rules might impact this relationship, the relationship
between qualifying and finishing positions shows a continued trend. From 2006 to 2008,
during the V8 era, the correlation was moderate (C = 0.628, ρ = 0.589, p < 0.001) with
a Rel Freq of 0.557. This improved in the 2009-2013 era, during which cars used V8s with
KERS (Kinetic Energy Recovery System), leading to a stronger association (C = 0.744,
ρ = 0.745), however, Rel Freq dropped to 0.478, likely due to the reduced reliability of
new technologies.

The 2014-2022 turbo-hybrid era demonstrated the strongest correlation between qual-
ifying positions and race finishes (C = 0.756, ρ = 0.777, p < 0.001) with a relative fre-
quency of 0.519. The introduction of hybrid power units further reinforced the importance
of qualifying and engineering reliability, as power unit efficiency and durability became
key factors in race performance. These trends underscore how F1’s evolving technology
has shaped the strength of the race session relationship and performance outcomes, with
qualifying continuing to be the most important moment of performance throughout the

13



weekend.

Start End Era Rank 1 Rank 2 C Spearman’s ρ Rel. Freq

2006 2008 V8 Engines Qual. Pos. Finish Pos. 0.628 0.589 0.558

2009 2013 V8 + KERS Qual. Pos. Finish Pos. 0.744 0.745 0.478

2014 2022 Turbo-Hybrid Qual. Pos. Finish Pos. 0.756 0.777 0.519

Table 3: Association between qualifying and race finishing positions across F1 technical eras.
Values show contingency coefficients (C), Spearman’s ρ (-1 to 1), and Relative Frequency (0-1).

3.6 Season-by-Season Variation

Figure 2: Season-by-season analysis of the contingency coefficient (C) and Spearman’s ρ for
qualifying positions versus race finishing positions (2006-2023). Higher values indicate stronger
association between qualifying and finishing performance. Y-axis truncated at 0.65 for visual
clarity; correlations range from -1 to 1.

Figure 2 compares the contingency coefficient (C) and Spearman’s ρ between quali-
fying results and race finishes, season by season. Both metrics show consistently strong
associations (with C values generally exceeding 0.81 and ρ over 0.65), confirming that
qualifying performance remains a reliable indicator of race outcomes across all years.
However, their trajectories do not always align perfectly, as C and ρ capture different
statistical properties of the same relationship.

The contingency coefficient (C) reflects categorical concentration, indicating how
tightly finishing positions cluster around specific grid slots, while Spearman’s ρ measures
the monotonic consistency of ranks across the entire field. As a result, C can remain
high in seasons dominated by a few top-performing teams (e.g., Ferrari dominating in
the mid/late 2000s, Redbull Racing dominating from 2010 to 2013 and in 2023, and

14



Mercedes dominating from 2014 to 2020), even if mid-field ordering varies substantially,
which lowers ρ. Conversely, when performance is more evenly distributed while rank
order remains stable, ρ may exceed C. Using both statistics provides complementary
insight, as C captures categorical concentration while ρ reflects rank-order consistency,
together offering a fuller picture of competitive balance across seasons.

This divergence highlights how different competitive dynamics influence the two statis-
tics. In eras of strong team dominance, grid positions translate into race outcomes more
categorically (high C), whereas, in more competitive seasons, positional order is preserved
across the field but is less tightly clustered (high ρ). These complementary metrics to-
gether show that qualifying remains a strong predictor of race outcomes, though the exact
pattern of association varies with the competitive balance and technical regulations of
each season. While this work does not explicitly control for variation in field strengths
across different seasons, these differences in competitive parity provide useful context for
interpreting the fluctuations in both association measures.

3.7 Ordinal Logistic Regression

3.7.1 Results and Analysis

An ordinal logistic regression (OLR) model (as described in Equation 3) was applied to
quantify the relative association strength between session rankings and the final race out-
come. The OLR model included the independent variables of the three practice session
rankings (Pos p1, Pos p2, Pos p3) as well as the qualification placement (Pos q). Table 4
presents the outputs from the OLR, highlighting the estimated coefficients (β), standard-
ized regression coefficients (β), and the statistical significance (p) of each predictor.

Predictor Coefficient (β) Standardized β p-value

Pos q (Qualification Position) 0.2545 1.558 < 0.001
Pos p3 (Practice 3 Position) 0.0610 0.379 < 0.001
Pos p2 (Practice 2 Position) 0.0576 0.368 < 0.001
Pos p1 (Practice 1 Position) 0.0463 0.291 < 0.001

Table 4: Ordinal Logistic Regression coefficients (β) and standardized β values for session
rankings predicting race finish. Higher standardized β values indicate stronger association with
finishing position.

The results of the OLR suggest that the Qualification position shows the strongest
association with final race placement, with a coefficient of 0.2545 This implies that for
every position improved in Qualification, the log-odds of achieving a better finishing
position in the race increase by 28.9% (e0.2545 = 1.289). Among the practice sessions,
Practice 3 exhibits the highest association in the final race standings, followed by Practice
2, and then Practice 1. This suggests that Practice 3 is the most relevant session for race
outcomes (among practice sessions) and reinforces the importance of teams using this
time to optimize car setup ahead of qualifying. In contrast, Practice 1 has the smallest
effect and confirms that early-weekend sessions are better exploratory sessions for data
collection or potentially new driver testing.

While raw coefficients provide some insight into the direct relationship between these
variables and the final race result, they cannot be directly compared due to the scale
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of the predictors. To address this, we calculated the standardized regression coefficients
(also reported in Table 4). These standardized coefficients present results similar to the
relative association strength among sessions. In addition, they confirm that qualifica-
tion has an impact that is about four-times larger than any of the practice sessions.
This pattern empirically supports the strategic emphasis that teams place on qualifying
performance. Among the practice sessions, Practice 3 is the most important and con-
firms the significance of establishing an optimal setup within this window ahead of the
qualification session. While teams already use Practice 3 to fine-tune setups, this work
provides empirical evidence that performance in P3 significantly predicts race outcomes,
reinforcing the importance of this session.

3.7.2 Threshold Estimates and Performance Barriers

We present the threshold values from the OLR model in Figure 3. These thresholds define
the log-odds cutoffs between ranking categories, which provide us with insight into the
difficulty of progressing through the grid. Alternatively, this can be stated as follows:
these cutoffs represent the log-odds of a driver finishing at or above a given position,
the more negative the value, the greater the difficulty in surpassing that position, while
smaller values suggest smoother transitions.

The 1.0/2.0 threshold (−0.1957) is one of the least negative values of all thresholds,
which suggests that the pole position is more vulnerable to being lost than most other
transitions (one cannot finish higher than first). This reflects real world patterns where
P1 can be seen to lose the lead in the opening laps due to first-corner incidents, poor
starts, slip-streaming, and strategies. Pole sitters should focus not just on qualification
but also on their race start procedures.

The 2.0/3.0 threshold is the most unique threshold, as it is the only positive value
(0.0441) that indicates finishing in P2 versus P3 is more evenly distributed compared
to other transitions In other words, once drivers are able to reach the podium ranks, it
is much more fluid to swap and finish between P2 and P3. This aligns with real world
trends, where close margins, race strategy, pit stop execution, and team orders can all
have an impact.

Conversely, with the 3.0/4.0 threshold, the negative threshold value (−0.3036) in-
dicates a key difficulty in standing on the podium. While P4 is often within reach of
a podium finish, P3 needs to maintain a significant performance gap over P4, further
emphasizing all the external factors that can affect final race standings.

The most negative threshold value comes from the 10.0/11.0 threshold (−0.7979),
which indicates that breaking into the Top 10 is the hardest transition. This aligns with
and reflects Formula 1’s competitive structure, where only the top 10 positions in a race
earn points. For backmarker teams, single digit points can make the difference in their
final season standings and, thus, the earnings they can bring home at the end of the
season. Drivers running in P11 need to consider greater strategic risks to attempt to
secure a points finish.

The remainder of the threshold values, in the midfield positions, tend to indicate a
smoother transition, indicating that these positions on the field likely experience the most
frequent position changes. This can arise from cars ahead not being able to finish and
missing the opportunity to move up in the ranking. It also implies that these teams have
more opportunities to try to move closer to final positions with a point finish.
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Figure 3: Threshold Estimates (Intercepts) from Ordinal Logistic Regression. X-axis = finish-
position thresholds; Y-axis = cumulative log-odds intercepts. Thresholds represent the cumula-
tive log-odds cutoffs between ranking categories; more negative values indicate greater difficulty
in surpassing that position.
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3.7.3 Model Evaluation and Fit

To assess our association model’s fit, we first computed McFadden’s pseudo-R2, which
compares the log-likelihood of the fitted model against a null (intercept-only) model. We
obtained a pseudo-R2 = 0.0166 (low R2 is normal for descriptive ordinal models), indi-
cating that while our model captures directional relationships between session results and
final positions, the majority of the variance in race outcomes remains unexplained. This
reflects the inherently unpredictable nature of Formula One, where race-day incidents,
weather, and strategy often override qualifying indicators. The model’s Akaike Informa-
tion Criterion (AIC) of 25,657.28 provides a useful benchmark for comparing competing
models. However, this pseudo-R2, as used in ordinal logistic regression, is widely criti-
cized for offering limited insight into the overall suitability of the model (Fagerland and
Hosmer, 2016, 2017).

To address this concern, we also implemented a Pearson chi-square goodness-of-fit test
that compares observed and expected frequencies across the predicted outcome categories.
This test yielded a statistic of χ2 = 6, 828.25 with 414 degrees of freedom (p < 0.001),
which indicates a statistically significant deviation between the predicted and observed
outcomes. While this result suggests a lack of fit, such chi-square statistics are highly
sensitive to large sample sizes and sparse contingency tables, which could inflate Type I
errors (Fagerland and Hosmer, 2016; Lipsitz et al., 1996).

Other options were considered for goodness-of-fit tests, such as the Cg (Hosmer-
Lemeshow type), the Lipsitz test, and the Pulkstenis–Robinson (PR) test. Given their
difficulty in implementation with standard Python libraries, we opted for the Pearson
chi-square goodness-of-fit; the others are recommended in the literature for their sensi-
tivity to different forms of model misspecification. As an example, the Cg and Lipsitz
tests are more effective at identifying issues related to continuous predictors, while the
PR tests are better suited to models with categorical predictors (Fagerland and Hosmer,
2017; Lipsitz et al., 1996; Gertheiss et al., 2023). Future work could incorporate these
more targeted methods.

Despite the model’s low overall explanatory power, the qualifying position remains
the most influential predictor among all weekend sessions. Rather than forecasting exact
outcomes, the model quantifies the relative association strength of each session with final
performance. All together, while the model indicates directional trends, the residual lack
of fit may indicate that important sources of variation (e.g., weather, pit strategy, and
race incidents) are not fully accounted for in this current model. Future refinement and
the incorporation of additional covariates are likely necessary to improve calibration.

3.7.4 Multicollinearity

To assess the robustness of our OLR model, we evaluated the presence of multicollinearity
among the predictor values using Variance Inflation Factors (VIFs). High multicollinear-
ity can distort coefficient estimates, making it difficult to determine the true influence of
each predictor on race outcomes.

We first computed the VIF scores for all predictor variables in the OLR, which were
the three practice sessions (Pos p1, Pos p2, Pos p3) and the qualification position (Pos q).
The results can be seen in Table 5 and reveal significant multicollinearity, particularly
between qualification positions and the later practice sessions.

Using a baseline of a VIF score of 5 to indicate moderate collinearity, and 10 or
higher suggesting severe collinearity, we can see from Table 5 that both Pos q and Pos p2
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Predictor VIF Score

Pos q (Qualification Position) 12.110
Pos p3 (Practice 3 Position) 9.608
Pos p2 (Practice 2 Position) 10.443
Pos p1 (Practice 1 Position) 7.951

Table 5: Variance Inflation Factor (VIF) Scores (Initial Model). Higher scores indicate greater
collinearity; values above 10 suggest severe multicollinearity.

exhibit substantial multicollinearity, with Pos p3 right behind. This suggests that there
is a strong relationship between a driver’s late weekend performance and their qualifying
results, which aligns with the strategy whereby teams use these later sessions to fine-tune
car setup and maximize qualifying performance.

Given the high collinearity among these sessions, we tested two approaches to miti-
gate this. First, we iteratively removed the highest VIF contributors; first Pos p2, then
Pos p1. However, this still left a substantial correlation between Pos p3 and Pos q (VIF
of 8.396279 for both). We then used Principal Component Analysis (PCA) to preserve
informational variance by combining the three practice sessions into a single composite
variable termed ”Practice Performance Score,” dramatically lowering VIF to near 1.000.

While PCA was mathematically effective in reducing multicollinearity, it came at a
significant cost to the explanatory power and usefulness of our model. After applying
OLR, we found that while the log-likelihood improved slightly (-12,802 to -12,286) and
the AIC dropped slightly (25,467 to 24,621), McFadden’s R2 fell to 0.00, suggesting that
the model lost almost all explanatory power, and the Practice Performance Score became
statistically insignificant (p = 0.590).

Altogether, these results confirm that qualification is the strongest individual pre-
dictor of race outcomes; however, they also emphasize that Practice 3 plays a crucial
role in preparing for qualification. The strong collinearity between these sessions sug-
gests that teams optimizing for performance in Practice 3 are more likely to achieve a
strong qualifying result and thus dictate a strong race outcome. Despite multicollinearity
among sessions, the qualification position remains the most robust explanatory variable,
reinforcing its dominant statistical association with race outcomes. Teams should eval-
uate progression across the entire weekend; however, their combined impact cannot be
captured by a single aggregate score.

4 Discussion and Conclusion

4.1 Summary and Correction of Prior Findings

The replication of prior findings presented in this work demonstrates that the conclusions
of Mühlbauer (2010) were likely largely influenced by their decision to truncate the sample
size and focus on reviewing only the top eight starting positions within a race. By
restricting the analysis to only these top positions, this data selection understates the
strength of the relationship between the starting position and their final race outcome.
By using a full-grid dataset spanning two decades, our findings show that qualifying
performance (measured before any penalties or grid starting position adjustments) is the
most reliable indicator of race results of any session over a race weekend. The previously
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reported dominance of starting grid position likely reflects an artifact of the limited
sampling in the study rather than the genuinely strongest relationship.

4.2 Interpretation of Results

The dominance of qualifying results having the strongest relationship with finishing po-
sition in the race, across all statistical measures and weekend sessions, reflects the nature
of F1 as a sport itself: one-lap performance, under controlled conditions, is the clear-
est demonstration of a car and driver’s capability. By contrast, when you focus on just
the starting-grid position, which has already incorporated post-session penalties (i.e.,
component changes, interference with other competitors, or other infractions), that only
disguises the true competitive nature of all entries. This helps hypothesize why qualify-
ing, and not grid placement itself, is the strongest and most stable association with race
outcomes across a weekend.

Practice sessions help demonstrate the evolution of a car weekend, but they display
weaker associations (vs qualifying) that continue to improve over the weekend (from P1
through P3). This pattern reflects how teams tend to focus on iteratively optimizing
their car’s setups (i.e., making mechanical and aerodynamic adjustments to a car to
improve performance for the specific track conditions), with the final practice session,
P3, serving as a bridge to qualifying. Although these sessions are primarily used for data
collection and driver preparations, their statistical link to final race results underscores
that weekend preparation still carries measurable performance implications.

4.3 Limitations

This study deliberately focuses on the observable session-level variables to isolate their
statistical association with race results in order to compare and challenge existing pub-
lished work. As such, this analysis does not incorporate the contextual or stochastic
factors that can also impact the final placement of a race, such as weather variability,
track type, pit strategy, tyre strategy, tyre degradation, safety-car interventions, in-race
incidents, or the separation of driver and car skills. The OLR model explains a small pro-
portion of total variance, consistent with the inherent stochasticity of F1 racing, but still
indicates that important explanatory variables remain unmodelled. Additionally, this
study assumes uniform competitive strength across seasons; however, in reality, Formula
One varies in parity by year, with some seasons seeing one team dominate, while in other
years, there is a more competitive balance. Eras of team dominance inflate session-race
associations, while the more balanced grids introduce additional variability in results.

Additionally, this dataset selection excludes sprint weekends (which continue to grow
over the years) and races with incomplete session data, which may slightly limit generaliz-
ability to these evolving race formats. While our approach addresses a key sampling flaw
in prior work, it remains more of a correlational framework than a predictive or causal
one. Despite these choices in this study, this work establishes a large-scale and statisti-
cally transparent replication of F1 performance associations using open-source data that
can serve as a framework for future research.
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4.4 Future Work

The findings presented in this work aim to establish and correct an empirical baseline
for understanding session-to-race relationships in a Formula One weekend. By revisiting
and extending earlier analysis with a full-grid, multi-season dataset, this study provides
a more accurate foundation for quantifying how performance evolves across practice,
qualifying, and race sessions.

Future research should continue to expand this framework by integrating additional
covariates that capture the complex dynamics influencing race outcomes. Many of these
are suggested in Section 4.3 and include weather conditions, track characteristics, tyre
choice and strategies, reliability events, and pit-stop execution metrics. This effort can be
complemented with session-level indicators such as in-race telemetry, sector and micro-
sector performance, driver physiological data, and car-specific performance parameters
to develop a more comprehensive explanatory framework extending toward predictive
modelling.

To strengthen this progression toward predictive applications, future analysis should
incorporate indicators of competitive balance within each season—such as point vari-
ance, team win or podium shares, or Elo-like strength ratings—to explicitly model field
strength and adjust for variability in competitive parity across seasons. Predictive models
developed on these enhanced datasets should also include alternative benchmarks, such
as betting-market odds and out-of-sample validation, to ensure robustness and real-world
calibration.

The introduction of sprint weekends since 2021 provides a valuable natural experiment
to examine how reduced preparation time affects weekend performance dynamics. All of
these richer datasets can help identify which factors most strongly determine whether
faster cars successfully convert qualifying pace into race success and begin to separate
the relative contributions of driver skill and car performance. By correcting the empirical
foundation of earlier work, this paper establishes a benchmark for evaluating how new
rules, technologies, and driver–team interactions shape competitive outcomes in Formula
One, especially given the limited scope of prior academic research in this domain.

4.5 Conclusion

This study aims to replicate and extend prior research on Formula One performance and
correct earlier misinterpretations arising from an intentionally truncated sample size, both
in terms of the time span of the data and the participants in the races. Across nearly
two decades of races and multiple technological eras, qualifying performance consistently
emerges as the variable most strongly associated with final race outcomes, confirming
it as the most accurate reflection of underlying car and driver capability ahead of the
starting flag on race day.

By contrast, grid position, which is adjusted for penalties, dilutes this relationship
and should be treated as the primary independent predictor of race performance. This
work aims to shift the discussion from prediction to association, providing a statistically
sound foundation for future modelling efforts to incorporate richer contextual variables
and causal mechanics.
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