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Abstract

A runner’s primary lead off first base creates leverage to steal second but also ex-
posure to pickoffs. We develop a nested sequence of logistic models to estimate (i)
pickoff attempts, (ii) pickoff success given an attempt, (iii) steal attempts given no
pickoff, and (iv) steal success given an attempt, using 2024 MLB data and Baseball
Savant metrics. We map stage probabilities to expected runs via fixed linear weights
(+0.20 for a successful steal; -0.45 for caught stealing or picked off) and optimize over
lead distance to obtain a context-specific optimal lead L∗. Empirically, observed leads
are modestly larger than optimal on average (+0.19 ft), with a larger gap on steal
attempts (+0.67), consistent with unobserved intent to steal. This framework quanti-
fies the central trade-off – greater leads increase steal success but raise pickoff risk –
on a common expected-runs scale and yield actionable, interpretable recommendations
within the observed support.

1 Introduction

1.1 History of Base Stealing

In baseball, scouts traditionally evaluate five tools – hitting for average, hitting for power,
fielding, throwing, and speed. Among these, speed is often underappreciated, yet it strongly
shapes a player’s impact on the base paths. Stolen bases are the most conspicuous expression
of that impact.

Historically, steals have waxed and waned with the run-scoring environment of the MLB.
During the Deadball era (c. 1900–1920), home run rates were quite low and teams relied
more on advancing runners to score. Many seasons saw clubs exceed 100 steals and leagues
tally well over 1,000 steals combined (McMurray, 2015). As home runs rose from the 1930s
through the 1950s, average team steals fell to roughly 39 per season (Baseball-Reference, nd).
Then from the 1960s to the 1980s, players like Lou Brock and Rickey Henderson brought
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base-stealing back into fashion, and Maury Wills’s remarkable 1962 season (featuring 104
stolen bases) was a turning point in baserunning that influenced how opponents pitched and
held runners on (Vazzana, 2016).

1.2 Sabermetrics and Expected Runs

By the 1990s–2000s, sabermetrics reframed the value of the steal. Bill James argued that
a steal must succeed about two-thirds of the time to break even – a "rule of thumb" that
recognizes outs as scarce resources and emphasizes efficiency over raw totals (James, 2023).
Building on this, linear weights assign average run values to outcomes independent of specific
context. On Baseball Savant, a successful steal is valued at +0.20 expected runs (or xRuns),
while being caught stealing or picked off are -0.45 xRuns each (Baseball Savant, nd). These
provide a consistent baseline for evaluation.

However, context still matters when deciding to steal a base. The run value of a steal
depends on the base-out state (which bases are occupied × number of outs). Note that there
are 23×3 = 24 possible such states. Sabermetrics defines the "value of a play" as the change
in run expectancy between states, and run expectancy tables (like Table 1) are frequently
used to estimate this. According to Table 1, stealing second base with 0 outs and no one
else on base is worth 1.068 − 0.831 = 0.237 runs, while being caught stealing in the same
situation is worth 0.243− 0.831 = −0.588 runs (FanGraphs, nd).

Table 1: Example run expectancy table

Runners 0 Outs 1 Out 2 Outs

Empty 0.461 0.243 0.095
1 _ _ 0.831 0.489 0.214
_ 2 _ 1.068 0.644 0.305
1 2 _ 1.373 0.908 0.343
_ _ 3 1.426 0.865 0.413
1 _ 3 1.798 1.140 0.471
_ 2 3 1.920 1.352 0.570
1 2 3 2.282 1.520 0.736

Example run expectancy table (FanGraphs, nd).

1.3 The Lead’s Impact on Base Stealing

While speed is a key ingredient in stealing bases, the lead a runner takes off first base
critically shapes both steal success and pickoff risk. A larger lead shortens the distance to
second if the runner goes, but it also invites (and increases the success of) pickoff attempts
at first.

This strategic dimension of stealing has been studied in game-theoretic terms. Turocy (2014)
models the steal decision as a two-player inspection game between the runner and the defense,
where the runner chooses whether to go and the defense allocates attention between the
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runner and the batter. The mixed-strategy equilibrium implies a near-linear relationship
between attempt frequency and success rate, with validation over MLB play-by-play data
from 1974–2011. However, the framework does not prescribe an optimal primary lead nor
incorporate pitcher- and catcher-specific skills at the micro level.

A complementary physics approach examines the kinematics of a steal attempt. Using posi-
tion–time and velocity–time profiles for a case study, Kagan (2013) parametrizes acceleration
from first, slide deceleration, top speed, speed upon arrival, and the runner’s lead distance.
He finds that sprint speed and initial acceleration most strongly affect success, with com-
paratively modest effects attributed to the primary lead. This analysis, while insightful
mechanically, only implicitly considers pickoff risk and is limited in its scope.

Data-driven work using tracking-era measurements shows how player behavior and pitcher
tendencies shape leads. Lindbergh (2015) uses MLB data on primary/secondary leads and
sprint speed, highlighting outliers (e.g., Jon Lester’s reluctance to throw over, enabling larger
leads; Ichiro Suzuki’s larger-than-expected leads relative to speed) and noting a positive
association between sprint speed and lead size. That study, however, does not jointly model
runner, pitcher, and catcher pop time, nor does it connect the full decision sequence (pickoff
attempt → pickoff success; steal attempt → steal success) to expected runs.

This study extends existing literature by (i) modeling the baserunning decision sequence
with a nested set of logistic regressions, (ii) incorporating runner sprint speed, pitcher hold
ability (Threat), and catcher pop time in the relevant stages, and (iii) optimizing primary
lead distance to maximize expected runs for the base state of a runner on first (second and
third empty). In doing so, we jointly quantify the reward of a larger lead (higher steal
probability) and its cost (higher pickoff probability) on a common expected-runs scale.

2 Methodology

2.1 Data Overview

Our primary dataset, provided by MLB, comprises 2024 play-by-play data. It includes all
pickoff attempts, a random sample of called pitches, and every stolen base attempt on takes
(pitches where the batter did not swing). Each observation includes pitch context (inning,
date, home/away, count, outs), participant IDs (runner, pitcher, catcher), and the runner’s
primary and secondary lead distances in feet (we denote the primary lead by L). To avoid
base-state confounding, we restrict to the state with a runner on first and second/third
empty. We then merge in the following covariates from Baseball Savant that may influence
the decision to steal, namely:

• Runner sprint speed, s (in feet/second).

• Catcher pop time, p (seconds): the average time it takes a catcher to throw the ball
to second base after receiving a pitch

• Pitcher "Threat," θ (per 100 IP): Baseball Savant’s Net Bases Prevented (Baseball
Savant, nd) scaled to 100 innings pitched, θ = 100 NBP

IP
; higher values indicate better
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control of the running game.

To evaluate the expected value of base-stealing outcomes, we used fixed linear weights from
Baseball Savant:

xRuns = 0.20 · 1{SB} − 0.45 · 1{CS} − 0.45 · 1{PK} (1)

where 1{A} represents an indicator that is 1 if A occurs and 0 otherwise. This metric
estimates the relative value of a stolen base (SB) and the harmful cost of being picked off
(PK) or caught stealing (CS).

2.2 Modeling Framework

We proceed by representing the baserunning process as a nested sequence of conditional
events once a runner reaches first, namely:

• Pickoff attempt (PO).

• If attempted: pickoff successful (PK | PO).

• If no pickoff: steal attempt (ATT | ¬PO).

• If attempted: successful steal (SB | ATT).

If none of these occur, the pitch is classified as Nothing. Each stage is modeled with a
logistic regression with predictors reflecting the hypothesized mechanisms for each stage.
Formally,

P(PO | L, θ) = logit−1(α0 + α1L+ α2θ), (2)
P(PK | PO, L, θ) = logit−1(β0 + β1L+ β2θ), (3)

P(ATT | ¬PO, θ, p, s) = logit−1(γ0 + γ1θ + γ2p+ γ3s), (4)
P(SB | ATT, L, θ, p, s) = logit−1(δ0 + δ1L+ δ2θ + δ3p+ δ4s). (5)

Note that in Equation 4, we intentionally exclude the primary lead L and treat P(ATT |
¬PO, θ, p, s) as the runner’s baseline green-light probability of stealing 2nd base. This avoids
simultaneity of L and (unobserved) intent to steal, implying that L influences attempt prob-
ability only indirectly through its effect on P(PO | L, θ).

Now letting X = (θ, p, s) represent known player characteristics, conditional probability laws
give us the following:

P(PK | L, θ) = P(PK | PO, L, θ) · P(PO | L, θ)

P(ATT | L,X) = P(ATT | ¬PO, θ, p, s) · (1− P(PO | L, θ))

P(SB | L,X) = P(SB | ATT, L,X) · P(ATT | L,X)

P(CS | L,X) = (1− P(SB | ATT, L,X)) · P(ATT | L,X)
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Taking conditional expectations of Equation 1 gives the following:

E[xRuns | L,X] = 0.20 · E[1{SB} | L,X]− 0.45 · E[1{CS} | L,X]− 0.45 · E[1{PK} | L,X],

which implies that

xRuns(L,X) = 0.20 · P(SB | L,X)− 0.45 · P(CS | L,X)− 0.45 · P(PK | L,X), (6)

which is fully estimable from our logistic models in Equations 2 to 5.

2.3 Objective and Optimization

Then for a fixed triplet X = (θ, p, s) corresponding to a specific pitcher-catcher-runner
situation, we define expected runs as a function of the lead:

xRuns(L) = 0.20 · P(SB | L)− 0.45 · P(CS | L)− 0.45 · P(PK | L) (7)

We then compute the optimal lead for that situation as

L∗ = argmax
L∈L

xRuns(L), (8)

using R’s optimize() function over a bounded domain L restricted to the observed support
of leads in our data. We then compare the observed lead to L∗ to quantify lead deviation.

3 Results

3.1 Model Estimates

We report coefficient estimates for our logistic regressions in Tables 2–5. All interpreta-
tions below are associative (not causal), conditional on the included covariates and model
specification.

In the pickoff-attempt model (Table 2), a one-foot larger lead is associated with roughly 20%
higher odds of a throw-over (exp(0.1863)≈1.20), while a one-unit increase in pitcher Threat
is associated with about 1.2% lower odds (exp(−0.0125)≈0.988), holding lead fixed.

In the pickoff-success-given-attempt model (Table 3), pickoff success is positively associated
with both lead distance (79% higher odds per foot; exp(0.5844) ≈ 1.79) and Threat (19%
higher odds per unit; exp(0.1763)≈1.19).

In the steal-attempt-given-no-pickoff model (Table 4), a one-unit increase in Threat is asso-
ciated with a 9% decrease in attempt odds (exp(−0.0969)≈0.91). Attempt odds are higher
with slower catchers (about +12% per 0.1 s of pop time; exp(0.11298) ≈ 1.12) and faster
runners (about +85% per +1 ft/s of sprint speed; exp(0.6153)≈1.85).

In the steal-success-given-attempt model (Table 5), success odds are higher with longer
leads (about +8% per foot; exp(0.0769)≈1.08) and slower pop times (about +68% per 0.1 s;
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exp(0.5213)≈ 1.68), lower with higher Threat (about –6% per unit; exp(−0.0603)≈ 0.94),
and only weakly related to sprint speed (p ≈ 0.08) once other factors are included.

Overall, these associations align with baseball intuition and indicate that the models recover
expected trade-offs between lead size, pickoff risk, and steal success. Note that these esti-
mates are associative – not causal – and should be interpreted conditional on the included
covariates and model specification.

Table 2: Logistic regression for pickoff attempts (PO)

Term Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.1343 0.0737 -56.072 < 2× 10−16

PrimaryLead1B 0.1863 0.0068 27.501 < 2× 10−16

Threat -0.0125 0.0027 -4.647 3.37× 10−6

Table 3: Logistic regression for pickoff success given attempt (PK | PO)

Term Estimate Std. Error z value Pr(> |z|)

(Intercept) -10.9581 0.6992 -15.672 < 2× 10−16

PrimaryLead1B 0.5844 0.0573 10.200 < 2× 10−16

Threat 0.1763 0.0263 6.698 2.11× 10−11

Table 4: Logistic regression for steal attempt given no pickoff (ATT | ¬PO)

Term Estimate Std. Error z value Pr(> |z|)

(Intercept) -22.6976 0.9395 -24.159 < 2× 10−16

Threat -0.0969 0.0036 -27.223 < 2× 10−16

poptime 1.1298 0.3976 2.841 4.49× 10−3

sprint_speed 0.6153 0.0186 33.118 < 2× 10−16

3.2 Expected Runs and Lead Deviation

For each pitcher-catcher-runner triplet Xi = (θ, p, s) and each candidate lead distance L ∈ L,
we compute xRuns(L | Xi) from our fitted models (Section 3.1) via Equation 6. We then
report the optimal lead as in Equation 8:

L∗ = argmax
L∈L

xRuns(L | Xi)

We define lead deviation as
di ≡ Lobs

i − L∗
i , (9)

so di > 0 indicates an aggressive (too-large) lead and di < 0 a conservative (too-small) lead.
We compute this deviation for all observations in our dataset and display the distribution
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Table 5: Logistic regression for steal success given steal attempt (SB | ATT)

Term Estimate Std. Error z value Pr(> |z|)

(Intercept) -12.2005 2.2193 -5.498 3.85× 10−8

PrimaryLead1B 0.0769 0.0351 2.193 2.83× 10−2

Threat -0.0603 0.0108 -5.594 2.22× 10−8

poptime 5.2134 0.9071 5.747 9.08× 10−9

sprint_speed 0.0770 0.0442 1.743 8.14× 10−2

of lead deviations in Figure 1. This distribution is approximately normal and is centered
at +0.19 ft. Additionally, we plot the distribution of lead deviations when a stolen base is
attempted in Figure 2. This distribution is also approximately normal, but with a higher
mean deviation from our estimated optimal lead (+0.67 ft). This is very likely indicative
of intent to steal, which is unknown to us. Additional visualizations of lead deviation are
included in Appendix A.

3.3 Case Study: Cubs vs. Pirates, August 28, 2024

In an August 28, 2024 game between the Chicago Cubs and Pittsburgh Pirates, Pete Crow-
Armstrong (PCA) took an 11.46 foot lead against opposing pitcher Paul Skenes and catcher
Yasmani Grandal (pictured in Figure 3). Considering PCA’s sprint speed of 30 ft/s, Skenes’
estimated Threat of 4.039, and Grandal’s pop time of 2.09 seconds, our model produces
an optimal lead estimate (L∗) of 10.37 ft. PCA’s lead exceeds this estimate by 1.09 feet,
indicating a slightly more aggressive lead than recommended.

Figure 4 displays the model-implied probabilities of SB, CS, and PK as functions of primary
lead L given the players involved, as well as the expected-runs estimate xRuns(L). Figure 5
demonstrates that a lead distance of 10.37 ft maximizes estimated expected runs (+0.007).
This turning point reflects the risk-reward balance when taking a lead: larger leads increase
the probability of reaching second safely, at the cost of increased pickoff danger.
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Figure 1: Distribution of lead deviations across all situations.
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Figure 2: Distribution of lead deviations when a stolen base is attempted. Note that this
distribution has a higher mean than the distribution across all situations.
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Figure 3: Pete Crow-Armstrong on first base, Paul Skenes pitching, Yasmani Grandal (not
seen) catching. (Marquee Sports Network, 2024)

Figure 4: Our model-implied outcome probabilities and estimated xRuns as a function of
Pete Crow-Armstrong’s lead distance.
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Figure 5: Expected runs as a function of Pete Crow-Armstrong’s lead distance.

4 Discussion

4.1 Conclusions

This study proposes a tractable framework for selecting a primary lead off first base that
maximizes expected runs in the base state with a runner on first and second/third empty. We
model the baserunning sequence with nested logistic regressions, using runner sprint speed,
catcher pop time, and pitcher hold ability ("Threat"). By mapping stage probabilities to
expected runs and evaluating over the observed range of lead distances, we obtain a context-
specific optimal lead L∗ and a diagnostic measure of deviation (Lobs − L∗).

Our results capture the central trade-off in lead-taking: increasing lead length raises the
probability of a successful steal, but also increases pickoff risk, yielding an xRuns(L) profile
with a well-defined maximum. Empirically, observed leads are modestly larger than optimal
on average (≈ +0.19 ft), with a greater departure on steal attempts (≈ +0.67 ft), which we
believe is consistent with unobserved intent to steal.

These findings offer an interpretable, data-driven basis for calibrating lead size that connects
directly to run expectancy, recovering intuitive effects and yielding stable recommendations
within the observed support.
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4.2 Limitations and Future Directions

Our analysis is not without its limitations, and each suggests a direct extension. Most
importantly, we do not observe intent to steal on a given pitch, and lead distance L may
co-move with intent. In practice, clubs know when a runner has a green light to steal, and
with access to intent labels could sharpen estimates by including that as a predictor. We
also restrict attention to the base state with a runner on first and second/third empty; other
configurations will shift both expected-run payoffs and defensive behavior, which could be
addressed by a parallel analysis. Furthermore, we map outcomes to expected runs using
context-averaged linear weights for ease, though the true value of a steal depends on game
state. Substituting in context-dependent expected run calculations from a table like Table
1 would yield situation-specific recommendations. Our model also treats each pitch as in-
dependent, though we know pitchers and runners adapt within at-bats and games. Finally,
our data includes only pickoffs and a sample of called pitches, under-representing swing out-
comes. A similar analysis with more extensive data (including other plausibly-important
covariates like batter handedness, pitch type/location, etc.) would correct for this.

4.3 Reproducibility

All analysis code and figure scripts are available HERE. Proprietary MLB data are not
publicly available.
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A Additional Lead Deviation Visualizations
Figure 6 reports the mean absolute lead deviation by team across all runner-on-first events.
Lower values indicate closer adherence to the model’s optimal lead. In our sample, the
Philadelphia Phillies and St. Louis Cardinals exhibit the largest mean absolute deviations,
whereas the Minnesota Twins, Detroit Tigers, and Atlanta Braves cluster near zero (closest
to optimal).

Figure 7 displays the runners with the smallest absolute mean lead deviation (i.e., most
consistently near-optimal). Figure 8 shows the tails of the signed distribution: panel (a)
lists the most aggressive runners (positive mean deviation; leads longer than optimal) and
panel (b) lists the most conservative runners (negative mean deviation; leads shorter than
optimal). Jazz Chisholm Jr., Michael Conforto, and Dansby Swanson obey our model most
closely (on average). Daniel Vogelbach, Mike Ford, and Luken Baker take the most aggressive
leads on average, while Brooks Baldwin, Anthony Volpe, and Carlos Correa take the most
conservative leads on average.
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Figure 6: Bar plot of average absolute lead deviation by team.

Figure 7: Baserunners with the smallest absolute average lead deviation.
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(a) Baserunners with the most positive average lead devia-
tion.

(b) Baserunners with the most negative average lead devia-
tion.

Figure 8: Baserunners with the largest signed lead deviations: (a) aggressive (longer-than-
optimal) and (b) conservative (shorter-than-optimal).
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